#### telesca_warp.R ####
#' Telesca Hierarchical Warping
#'
#' Implements a method of bayesian hierarchical curve registration described in a paper
#' by Telesca (date).
#'
#' @param y_list list of curves with equal length
#' @param niter,nburn MCMC iterations and burns. Total run time is the sum.
#' @param int_q number of internal knots specified for the warping function
#' @param int_p number of internal knots specified for the data curves
#' @param asig,bsig,at,bt,al,bl hyperparameters for inverse gamma priors on model variances
#' @param progress logical; indicates whether or not to print percent progress.
#' @param debug logical; stops function right before return and enters debug mode.
#' @return a list of warped curves, the estimated mean curve, and a vector of MCMC
#' acceptance rates. Curve list elements are vectors with length matching
#' the elements of y_list.
#' @export
telesca_warp <- function(y_list, niter = 1000, nburn = 1000, int_q = 5, int_p = 20,
asig = .1, bsig = .1, at = .1, bt = .1, al = .1, bl = .1,
progress = TRUE, debug = FALSE){
#----- Fixed Values -----#
n <- length(y_list)
m <- unique(sapply(y_list,length))
r <- 3 + 1
if(length(m) != 1) stop("All y_list elements must have equal length")
time <- seq(0, 1, len = m)
y_vec <- unlist(y_list)
q <- int_q + r
knot_loc_q <- seq(time[1], time[m], len = int_q+2)[-c(1,int_q+2)]
Hq <- bs(time, knots = knot_loc_q, intercept = T)
#Hq <- cbs(time, int_q)
p <- int_p + r
knot_loc_p <- seq(time[1], time[m], len = int_p+2)[-c(1,int_p+2)]
Hp <- bs(time, knots = knot_loc_p, intercept = T)
#Hp <- cbs(time,int_p)
nu <- c(rep(time[1],r),knot_loc_q,rep(time[m],r))
Upsilon <- (nu[r] - nu[1])/(r-1)
for(i in 1:(int_q+r-1)){
Upsilon[i+1] <- (nu[i+r] - nu[i+1])/(r-1) + Upsilon[i]
}
P <- K1(p)
Q <- K1(q)
P[1,1] <- 2
Q[1,1] <- 2
bigQ <- Matrix::bdiag(replicate(n, Q, simplify = FALSE))
mb <- rep(0,p)
tune <- .005
accepts <- numeric(n*(q-2))
#----- Save Structures -----#
nrun <- nburn + niter
beta_save <- matrix(NA, nrow = nrun, ncol = p)
beta_save[1,] <- mb
sig2_save <- numeric(nrun)
sig2_save[1] <- 1
tau2_save <- numeric(nrun)
tau2_save[1] <- 1
lam2_save <- numeric(nrun)
lam2_save[1] <- 1
phi <- lapply(1:n, function(i) Upsilon)
wtime <- lapply(1:n, function(i) time)
wtime_save <- lapply(1:n, function(i){
out <- matrix(NA, nrow = nrun, ncol = m)
out[1,] <- time
return(out)
})
H_list <- lapply(1:n, function(i) Hp)
H_stack <- stack_Matrix(H_list)
diag_m <- diag(m)
diag_nm <- diag(n*m)
#----- MCMC Loop -----#
if(progress == TRUE) bar <- txtProgressBar(min = 2, max = nrun, style = 3)
for(it in 2:nrun){
if (progress == TRUE) {
setTxtProgressBar(bar, it)
}
#-- Update Phi --#
for(i in 1:n){
tmp_phi <- phi[[i]]
current_llik <- dmnorm(y = y_list[[i]], mu = H_list[[i]] %*% beta_save[it - 1,],
prec = 1 / sig2_save[it - 1] * diag_m, log = TRUE, unnorm = TRUE)
current_lprior <- dmnorm(y = phi[[i]], mu = Upsilon,
prec = 1 / lam2_save[it - 1] * Q, log = TRUE, unnorm = TRUE)
for(j in 2:(q-1)){
tmp_phi[j] <- runif(1, min = max(tmp_phi[j] - tune, tmp_phi[j-1]),
max = min(tmp_phi[j] + tune, tmp_phi[j+1]))
tmp_Hp <- bs(Hq %*% tmp_phi, knots = knot_loc_p, intercept = TRUE)
#tmp_Hp <- cbs(Hq %*% tmp_phi, int_p)
cand_llik <- dmnorm(y = y_list[[i]], mu = tmp_Hp %*% beta_save[it - 1,],
prec = 1 / sig2_save[it - 1] * diag_m, log = TRUE, unnorm = TRUE)
cand_lprior <- dmnorm(y = tmp_phi, mu = Upsilon,
prec = 1 / lam2_save[it - 1] * Q, log = TRUE, unnorm = TRUE)
lratio <- cand_llik + cand_lprior - current_llik - current_lprior
if(log(runif(1)) < lratio){
current_llik <- cand_llik
current_lprior <- cand_lprior
accepts[(i-1)*(q-2)+(j-1)] <- accepts[(i-1)*(q-2)+(j-1)] + 1
}
else{
tmp_phi[j] <- phi[[i]][j]
}
}
phi[[i]] <- tmp_phi
}
#-- Update wtime --#
wtime <- lapply(1:n, function(i) as.numeric(Hq %*% phi[[i]]))
for(i in 1:n){
wtime_save[[i]][it,] <- wtime[[i]]
}
#-- Update H_list --#
H_list <- lapply(1:n, function(i) bs(wtime[[i]], knots = knot_loc_p, intercept = TRUE))
#H_list <- lapply(1:n, function(i) cbs(wtime[[i]], int_p))
#-- Update H_stack --#
H_stack <- stack_Matrix(H_list)
#-- Update Beta --#
beta_save[it,] <- update_normal_normal(y = y_vec, X = H_stack, mu = mb,
Sig_inv = 1 / sig2_save[it - 1] * diag_nm,
V_inv = 1 / tau2_save[it - 1] * P)
#-- Update Sig2 --#
sig2_save[it] <- update_normal_invgamma(y = y_vec, a = asig, b = bsig,
mu = H_stack %*% beta_save[it,],
R_inv = diag_nm)
#-- Update Tau2 --#
tau2_save[it] <- update_normal_invgamma(y = beta_save[it,], a = at, b = bt,
mu = mb, R_inv = P)
#-- Update Lam2 --#
lam2_save[it] <- update_normal_invgamma(y = unlist(phi), a = al, b = bl,
mu = rep(Upsilon, n),
R_inv = bigQ)
}
close(bar)
accepts <- accepts / nrun
wtime_post <- lapply(wtime_save, function(w) apply(w[-c(1:nburn),], 2, mean))
#Hlist_post <- lapply(wtime_post, function(w) cbs(w, int_p))
Hlist_post <- lapply(wtime_post, function(w) bs(w, knots = knot_loc_p, intercept = T))
beta_post <- apply(beta_save[-c(1:nburn),], 2, mean)
sig2_post <- mean(sig2_save[-c(1:nburn)])
tau2_post <- mean(tau2_save[-c(1:nburn)])
lam2_post <- mean(lam2_save[-c(1:nburn)])
y_post <- lapply(1:n, function(i) as.numeric(Hlist_post[[i]] %*% beta_post))
y_reg <- lapply(1:n, function(i) interp_spline(wtime_post[[i]], y_list[[i]]))
mean_post <- as.numeric(Hp %*% beta_post)
if(debug == TRUE) browser()
return(list(y_post = y_post, y_reg = y_reg, mean_post = mean_post,
accepts = accepts, beta_chains = beta_save[-c(1:nburn),], wtime_post = wtime_post))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.