#' @include utils.R
#'
#' @title X-learner implemented via xgboost (boosting)
#'
#' @description X-learner as proposed by Kunzel, Sekhon, Bickel, and Yu (2017), implemented via xgboost (boosting)
#'
#' @param x the input features
#' @param w the treatment variable (0 or 1)
#' @param y the observed response (real valued)
#' @param k_folds_mu1 number of folds for learning E[Y|X,W=1]
#' @param k_folds_mu0 number of folds for learning E[Y|X,W=0]
#' @param k_folds_p number of folds for learning E[W|X]
#' @param mu1_hat pre-computed estimates on E[Y|X,W=1] corresponding to the input x. xboost will compute it internally if not provided
#' @param mu0_hat pre-computed estimates on E[Y|X,W=0] corresponding to the input x. xboost will compute it internally if not provided
#' @param p_hat pre-computed estimates on E[W|X] corresponding to the input x. xboost will compute it internally if not provided
#' @param ntrees_max the maximum number of trees to grow for xgboost
#' @param num_search_rounds the number of random sampling of hyperparameter combinations for cross validating on xgboost trees
#' @param print_every_n the number of iterations (in each iteration, a tree is grown) by which the code prints out information
#' @param early_stopping_rounds the number of rounds the test error stops decreasing by which the cross validation in finding the optimal number of trees stops
#' @param nthread the number of threads to use. The default is NULL, which uses all available threads
#' @param verbose boolean; whether to print statistic
#'
#' @examples
#' \dontrun{
#' n = 100; p = 10
#'
#' x = matrix(rnorm(n*p), n, p)
#' w = rbinom(n, 1, 0.5)
#' y = pmax(x[,1], 0) * w + x[,2] + pmin(x[,3], 0) + rnorm(n)
#'
#' xboost_fit = xboost(x, w, y)
#' xboost_est = predict(xboost_fit, x)
#' }
#'
#' @export
xboost = function(x, w, y,
k_folds_mu1=NULL,
k_folds_mu0=NULL,
k_folds_p=NULL,
mu1_hat=NULL,
mu0_hat=NULL,
p_hat=NULL,
ntrees_max=1000,
num_search_rounds=10,
print_every_n=100,
early_stopping_rounds=10,
nthread=NULL,
verbose=FALSE){
input = sanitize_input(x,w,y)
x = input$x
w = input$w
y = input$y
x_1 = x[which(w==1),]
x_0 = x[which(w==0),]
y_1 = y[which(w==1)]
y_0 = y[which(w==0)]
nobs_1 = nrow(x_1)
nobs_0 = nrow(x_0)
nobs = nrow(x)
pobs = ncol(x)
if (is.null(k_folds_mu1)) {
k_folds_mu1 = floor(max(3, min(10,nobs_1/4)))
}
if (is.null(k_folds_mu0)) {
k_folds_mu0 = floor(max(3, min(10,nobs_0/4)))
}
if (is.null(k_folds_p)) {
k_folds_p = floor(max(3, min(10,nobs/4)))
}
if (is.null(mu1_hat)){
t_1_fit = cvboost(x_1,
y_1,
objective="reg:squarederror",
k_folds = k_folds_mu1,
ntrees_max = ntrees_max,
num_search_rounds = num_search_rounds,
print_every_n = print_every_n,
early_stopping_rounds = early_stopping_rounds,
nthread = nthread,
verbose = verbose)
mu1_hat = predict(t_1_fit, newx = x)
} else {
t_1_fit = NULL
}
if (is.null(mu0_hat)){
t_0_fit = cvboost(x_0,
y_0,
objective = "reg:squarederror",
k_folds = k_folds_mu0,
ntrees_max = ntrees_max,
num_search_rounds = num_search_rounds,
print_every_n = print_every_n,
early_stopping_rounds = early_stopping_rounds,
nthread = nthread,
verbose = verbose)
mu0_hat = predict(t_0_fit, newx = x)
} else {
t_0_fit = NULL
}
d_1 = y_1 - mu0_hat[w==1]
d_0 = mu1_hat[w==0] - y_0
x_1_fit = cvboost(x_1,
d_1,
objective="reg:squarederror",
k_folds = k_folds_mu1,
ntrees_max = ntrees_max,
num_search_rounds = num_search_rounds,
print_every_n = print_every_n,
early_stopping_rounds = early_stopping_rounds,
nthread = nthread,
verbose = verbose)
x_0_fit = cvboost(x_0,
d_0,
objective="reg:squarederror",
k_folds = k_folds_mu0,
ntrees_max = ntrees_max,
num_search_rounds = num_search_rounds,
print_every_n = print_every_n,
early_stopping_rounds = early_stopping_rounds,
nthread = nthread,
verbose = verbose)
tau_1_pred = predict(x_1_fit, newx = x)
tau_0_pred = predict(x_0_fit, newx = x)
if (is.null(p_hat)){
w_fit = cvboost(x,
w,
objective = "binary:logistic",
k_folds = k_folds_p,
ntrees_max = ntrees_max,
num_search_rounds = num_search_rounds,
print_every_n = print_every_n,
early_stopping_rounds = early_stopping_rounds,
nthread = nthread,
verbose = verbose)
p_hat = predict(w_fit)
} else {
w_fit = NULL
}
tau_hat = tau_1_pred * (1 - p_hat) + tau_0_pred * p_hat
ret = list(t_1_fit = t_1_fit,
t_0_fit = t_0_fit,
x_1_fit = x_1_fit,
x_0_fit = x_0_fit,
w_fit = w_fit,
mu1_hat = mu1_hat,
mu0_hat = mu0_hat,
tau_1_pred = tau_1_pred,
tau_0_pred = tau_0_pred,
p_hat = p_hat,
tau_hat = tau_hat)
class(ret) <- "xboost"
ret
}
#' predict for xboost
#'
#' get estimated tau(x) using the trained xboost model
#'
#' @param object a xboost object
#' @param newx covariate matrix to make predictions on. If null, return the tau(x) predictions on the training data
#' @param new_p_hat propensity score on newx provided by the user. Default to NULL. If the user provided their own propensity p_hat in training, new_p_hat must be provided here.
#' @param ... additional arguments (currently not used)
#'
#' @examples
#' \dontrun{
#' n = 100; p = 10
#'
#' x = matrix(rnorm(n*p), n, p)
#' w = rbinom(n, 1, 0.5)
#' y = pmax(x[,1], 0) * w + x[,2] + pmin(x[,3], 0) + rnorm(n)
#'
#' xboost_fit = xboost(x, w, y)
#' xboost_est = predict(xboost_fit, x)
#' }
#'
#'
#' @return vector of predictions
#' @export
predict.xboost <- function(object,
newx = NULL,
new_p_hat = NULL,
...) {
if (!is.null(newx)) {
newx = sanitize_x(newx)
tau_1_pred = predict(object$x_1_fit, newx = newx)
tau_0_pred = predict(object$x_0_fit, newx = newx)
if (is.null(new_p_hat)) {
if (is.null(object$w_fit)) {
stop("Must provide new_p_hat since propensity has not been learned by the xlasso. Alternatively, do not supply p_hat when calling xlasso so the function learns a propenity model.")
} else {
new_p_hat = predict(object$w_fit, newx=newx)
}
}
tau_hat = tau_1_pred * (1 - new_p_hat) + tau_0_pred * new_p_hat
}
else {
tau_hat = object$tau_hat
}
return(tau_hat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.