est_msaeOBns | R Documentation |
This function gives EBLUPs optimum benchmarking for non sampled area based on multivariate Fay-Herriot (Model 1)
est_msaeOBns( formula, vardir, weight, cluster, samevar = FALSE, MAXITER = 100, PRECISION = 1e-04, data )
formula |
an object of class list of formula describe the fitted models |
vardir |
matrix containing sampling variances of direct estimators. The order is: |
weight |
matrix containing proportion of units in small areas. The order is: |
cluster |
matrix containing cluster of auxiliary variables. The order is: |
samevar |
logical. If |
MAXITER |
maximum number of iterations for Fisher-scoring. Default is 100 |
PRECISION |
coverage tolerance limit for the Fisher Scoring algorithm. Default value is |
data |
dataframe containing the variables named in formula, vardir, and weight |
This function returns a list with following objects:
eblup |
a list containing a value of estimators |
est.eblup : a dataframe containing EBLUP estimators
est.eblupOB : a dataframe containing optimum benchmark estimators
fit |
a list containing following objects: |
method : fitting method, named "REML"
convergence : logical value of convergence of Fisher Scoring
iterations : number of iterations of Fisher Scoring algorithm
estcoef : a data frame containing estimated model coefficients (beta, std. error, t value, p-value
)
refvar : estimated random effect variance
random.effect |
a data frame containing values of random effect estimators |
agregation |
a data frame containing agregation of direct, EBLUP, and optimum benchmark estimation |
## load dataset data(datamsaeOBns) # Compute EBLUP & Optimum Benchmark using auxiliary variables X1 and X2 for each dependent variable ## Using parameter 'data' ## Not run: Fo = list(f1 = Y1 ~ X1 + X2, f2 = Y2 ~ X1 + X2, f3 = Y3 ~ X1 + X2) vardir = c("v1", "v12", "v13", "v2", "v23", "v3") weight = c("w1", "w2", "w3") cluster = c("c1", "c2", "c3") est_msae = est_msaeOBns(Fo, vardir, weight, cluster, data = datamsaeOBns) ## Without parameter 'data' Fo = list(f1 = datamsaeOBns$Y1 ~ datamsaeOBns$X1 + datamsaeOBns$X2, f2 = datamsaeOBns$Y2 ~ datamsaeOBns$X1 + datamsaeOBns$X2, f3 = datamsaeOBns$Y3 ~ datamsaeOBns$X1 + datamsaeOBns$X2) vardir = datamsaeOBns[, c("v1", "v12", "v13", "v2", "v23", "v3")] weight = datamsaeOBns[, c("w1", "w2", "w3")] cluster = datamsaeOBns[, c("c1", "c2", "c3")] est_msae = est_msaeOBns(Fo, vardir, weight, cluster) ## Return est_msae$eblup$est.eblupOB # to see the Optimum Benchmark estimators ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.