mse_saeOBns: Parametric Bootstrap Mean Squared Error Estimators of Optimum...

mse_saeOBnsR Documentation

Parametric Bootstrap Mean Squared Error Estimators of Optimum Benchmarking for Univariate Non Sampled Area in Small Area Estimation

Description

Calculates the parametric bootstrap mean squared error estimates of optimum benchmarking for univariate non sampled area in small area estimation

Usage

mse_saeOBns(
  formula,
  vardir,
  weight,
  cluster,
  samevar = FALSE,
  B = 100,
  MAXITER = 100,
  PRECISION = 1e-04,
  data
)

Arguments

formula

an object of class list of formula describe the fitted model

vardir

vector containing sampling variances of direct estimators

weight

vector containing proportion of units in small areas

cluster

vector containing cluster of auxiliary variable

samevar

logical. If TRUE, the varians is same. Default is FALSE

B

number of bootstrap. Default is 1000

MAXITER

maximum number of iterations for Fisher-scoring. Default is 100

PRECISION

coverage tolerance limit for the Fisher Scoring algorithm. Default value is 1e-4

data

dataframe containing the variables named in formula, vardir, and weight

Value

mse.eblup

estimated mean squared errors of the EBLUPs for the small domains based on Prasad Rao

pbmse.eblupOB

parametric bootstrap mean squared error estimates of the optimum benchmark

running.time

time for running function

Examples


## load dataset
data(datamsaeOBns)

# Compute MSE EBLUP and Optimum Benchmark

## Using parameter 'data'
mse_sae = mse_saeOBns(Y1 ~ X1 + X2, v1, w1, c1, data = datamsaeOBns)

## Without parameter 'data'
mse_sae = mse_saeOBns(datamsaeOBns$Y1 ~ datamsaeOBns$X1 + datamsaeOBns$X2,
datamsaeOBns$v1, datamsaeOBns$w1, datamsaeOBns$c1)

## Return
mse_sae$pbmse.eblupOB # to see the MSE Optimum Benchmark estimators


yas-q/msaeOB documentation built on June 23, 2022, 7:10 p.m.