mse_saeOBns | R Documentation |
Calculates the parametric bootstrap mean squared error estimates of optimum benchmarking for univariate non sampled area in small area estimation
mse_saeOBns( formula, vardir, weight, cluster, samevar = FALSE, B = 100, MAXITER = 100, PRECISION = 1e-04, data )
formula |
an object of class list of formula describe the fitted model |
vardir |
vector containing sampling variances of direct estimators |
weight |
vector containing proportion of units in small areas |
cluster |
vector containing cluster of auxiliary variable |
samevar |
logical. If |
B |
number of bootstrap. Default is 1000 |
MAXITER |
maximum number of iterations for Fisher-scoring. Default is 100 |
PRECISION |
coverage tolerance limit for the Fisher Scoring algorithm. Default value is |
data |
dataframe containing the variables named in formula, vardir, and weight |
mse.eblup |
estimated mean squared errors of the EBLUPs for the small domains based on Prasad Rao |
pbmse.eblupOB |
parametric bootstrap mean squared error estimates of the optimum benchmark |
running.time |
time for running function |
## load dataset data(datamsaeOBns) # Compute MSE EBLUP and Optimum Benchmark ## Using parameter 'data' mse_sae = mse_saeOBns(Y1 ~ X1 + X2, v1, w1, c1, data = datamsaeOBns) ## Without parameter 'data' mse_sae = mse_saeOBns(datamsaeOBns$Y1 ~ datamsaeOBns$X1 + datamsaeOBns$X2, datamsaeOBns$v1, datamsaeOBns$w1, datamsaeOBns$c1) ## Return mse_sae$pbmse.eblupOB # to see the MSE Optimum Benchmark estimators
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.