est_saeOB | R Documentation |
This function gives EBLUPs optimum benchmarking based on univariate Fay-Herriot (model 1)
est_saeOB( formula, vardir, weight, samevar = FALSE, MAXITER = 100, PRECISION = 1e-04, data )
formula |
an object of class list of formula describe the fitted model |
vardir |
vector containing sampling variances of direct estimators |
weight |
vector containing proportion of units in small areas |
samevar |
logical. If |
MAXITER |
maximum number of iterations for Fisher-scoring. Default is 100 |
PRECISION |
coverage tolerance limit for the Fisher Scoring algorithm. Default value is |
data |
dataframe containing the variables named in formula, vardir, and weight |
This function returns a list with following objects:
eblup |
a list containing a value of estimators |
est.eblup : a dataframe containing EBLUP estimators
est.eblupOB : a dataframe containing optimum benchmark estimators
fit |
a list containing following objects: |
method : fitting method, named "REML"
convergence : logical value of convergence of Fisher Scoring
iterations : number of iterations of Fisher Scoring algorithm
estcoef : a data frame containing estimated model coefficients (beta, std. error, t value, p-value
)
refvar : estimated random effect variance
random.effect |
a data frame containing values of random effect estimators |
agregation |
a data frame containing agregation of direct, EBLUP, and optimum benchmark estimation |
## load dataset data(datamsaeOB) # Compute EBLUP & Optimum Benchmark using auxiliary variables X1 and X2 for each dependent variable ## Using parameter 'data' est_sae = est_saeOB(Y1 ~ X1 + X2, v1, w1, data = datamsaeOB) ## Without parameter 'data' est_sae = est_saeOB(datamsaeOB$Y1 ~ datamsaeOB$X1 + datamsaeOB$X2, datamsaeOB$v1, datamsaeOB$w1) ## Return est_sae$eblup$est.eblupOB # to see the Optimum Benchmark estimators
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.