h-methods | R Documentation |
The h
function represents the conditional distribution function of a
bivariate copula and it should be defined for every copula used in
a pair-copula construction. It is defined as the partial derivative of the
distribution function of the copula w.r.t. the second argument
h(x,v) = F(x|v) = \partial C(x,v) / \partial v
.
h(copula, x, v, eps)
copula |
A bivariate |
x |
Numeric vector with values in |
v |
Numeric vector with values in |
eps |
To avoid numerical problems for extreme values, the values of
|
signature(copula = "copula")
Default definition of the h
function for a bivariate copula.
This method is used if no particular definition is given for a copula.
The partial derivative is calculated numerically using the
numericDeriv
function.
signature(copula = "indepCopula")
The h
function of the independence copula.
h(x, v) = x
signature(copula = "normalCopula")
The h
function of the normal copula.
h(x, v; \rho) =
\Phi \left( \frac{\Phi^{-1}(x) - \rho\ \Phi^{-1}(v)}
{\sqrt{1-\rho^2}} \right)
signature(copula = "tCopula")
The h
function of the t copula.
h(x, v; \rho, \nu) =
t_{\nu+1} \left( \frac{t^{-1}_{\nu}(x) - \rho\ t^{-1}_{\nu}(v)}
{\sqrt{\frac{(\nu+(t^{-1}_{\nu}(v))^2)(1-\rho^2)}
{\nu+1}}} \right)
signature(copula = "claytonCopula")
The h
function of the Clayton copula.
h(x, v; \theta) = v^{-\theta-1}(x^{-\theta}+v^{-\theta}-1)^{-1-1/\theta}
signature(copula = "gumbelCopula")
The h
function of the Gumbel copula.
h(x, v; \theta) = C(x, v; \theta)\ \frac{1}{v}\ (-\log v)^{\theta-1}
\left((-\log x)^{\theta} + (-\log v)^{\theta} \right)^{1/\theta-1}
signature(copula = "fgmCopula")
The h
function of the Farlie-Gumbel-Morgenstern copula.
h(x, v; \theta) =
(1 + \theta \ (-1 + 2v) \ (-1 + x)) \ x
signature(copula = "frankCopula")
The h
function of the Frank copula.
h(x, v; \theta) =
\frac{e^{-\theta v}}
{\frac{1 - e^{-\theta}}{1 - e^{-\theta x}} + e^{-\theta v} - 1}
signature(copula = "galambosCopula")
The h
function of the Galambos copula.
h(x, v; \theta) =
\frac{C(x, v; \theta)}{v}
\left( 1 - \left[ 1 + \left(\frac{-\log v}{-\log x}\right)^{\theta} \right]^{-1-1/\theta} \right)
Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182–198.
Schirmacher, D. and Schirmacher, E. (2008) Multivariate dependence modeling using pair-copulas. Enterprise Risk Management Symposium, Chicago.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.