hinverse-methods | R Documentation |
The h^{-1}
function represents the inverse of the h
function with
respect to its first argument. It should be defined for every copula used
in a pair-copula construction (or it will be evaluated numerically).
hinverse(copula, u, v, eps)
copula |
A bivariate |
u |
Numeric vector with values in |
v |
Numeric vector with values in |
eps |
To avoid numerical problems for extreme values, the values of
|
signature(copula = "copula")
Default definition of the h^{-1}
function for a bivariate copula.
This method is used if no particular definition is given for a copula.
The inverse is calculated numerically using the uniroot
function.
signature(copula = "indepCopula")
The h^{-1}
function of the Independence copula.
h^{-1}(u, v) = u
signature(copula = "normalCopula")
The h^{-1}
function of the normal copula.
h^{-1}(u, v; \rho) = \Phi \left( \Phi^{-1}(u) \sqrt{1-\rho^2} +
\rho\ \Phi^{-1}(v) \right)
signature(copula = "tCopula")
The h^{-1}
function of the t copula.
h^{-1}(u, v; \rho, \nu) =
t_{\nu} \left( t^{-1}_{\nu+1}(u)\
\sqrt{\frac{(\nu+(t^{-1}_{\nu}(v))^2)(1-\rho^2)}{\nu+1}} +
\rho\ t^{-1}_{\nu}(v)
\right)
signature(copula = "claytonCopula")
The h^{-1}
function of the Clayton copula.
h^{-1}(u, v; \theta) =
\left( \left( u\ v^{\theta+1}\right)^{-\frac{\theta}{\theta+1}} +
1 - v^{-\theta} \right)^{-1/\theta}
signature(copula = "frankCopula")
The h^{-1}
function of the Frank copula.
h^{-1}(u, v; \theta) =
-\log \left( 1 - \frac{1-e^{-\theta}}
{(u^{-1} - 1) e^{-\theta v} + 1} \right) / \theta
Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182–198.
Schirmacher, D. and Schirmacher, E. (2008) Multivariate dependence modeling using pair-copulas. Enterprise Risk Management Symposium, Chicago.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.