Description Usage Arguments Details References See Also
estimates treatment effect based on ps estimation (e.g. inverse probability treatment weighting)
1 2 3 4 5 6 7 8 9 10 11 12 |
data |
A data frame to be used |
treatment |
Treatment variable name |
trt_indicator |
Value that indicates the unit is treated |
object |
A |
formula |
If not, write a formula to be fitted. Remember that you don't have to worry about group variable. .SD do exclude |
method |
Estimating methods
|
mc_col |
Indicator column name for MC simulation if exists |
sc_col |
Indicator column name for various scenarios if exists |
parallel |
parallelize some operation |
... |
Additional arguments of fitting functions |
This functions add columns by
\frac{trt_i}{\hat{e}_i} - \frac{1- trt_i}{1 - \hat{e}_i}
and
trt_i - (1 - trt_i) \frac{\hat{e}_i}{1 - \hat{e}_i}
Lee, B. K., Lessler, J., & Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine. Statistics in Medicine, 29(3), 337-346.
Pirracchio, R., Petersen, M. L., & Laan, M. van der. (2015). Improving Propensity Score Estimators’ Robustness to Model Misspecification Using Super Learner. American Journal of Epidemiology, 181(2), 108–119. https://doi.org/10.1093/aje/kwu253
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.