Description Usage Arguments Details References
generates a dataset for various scenarios
1 2 3 4 5 6 7 8 | sim_outcome(
n,
covmat = build_covariate(),
scenario = LETTERS[1:7],
b = c(0, 0.8, -0.25, 0.6, -0.4, -0.8, -0.5, 0.7),
a = c(-3.85, 0.3, -0.36, -73, -0.2, 0.71, -0.19, 0.26),
gam = -0.4
)
|
n |
sample size |
covmat |
Covariance matrix of the covariates |
scenario |
scenarios |
b |
coefficients for confounder and exposure predictors |
a |
coefficients in outcome model |
gam |
coefficient of exposure |
About scenarios:
A: additivity and linearity
B: mild non-linearity
C: moderate non-linearity
D: mild non-additivity
E: mild non-additivity and non-linearity
F: moderate non-linearity
F: moderate non-additivity and non-linearity
See Appendix of Setoguchi et al.
Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., & Cook, E. F. (2008). Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiology and Drug Safety, 17(6), 546–555 https://doi.org/10.1002/pds.1555
Lee, B. K., Lessler, J., & Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine. Statistics in Medicine, 29(3), 337-346. https://doi.org/10.1002/sim.3782
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.