Description Usage Arguments Value Author(s) References
A high-dimensional linear State Space Model(SSM) with a new Expectation-Regularization-Maximization(ERM) algorithm to construct the dynamic Gene Regularization Network(GRN). The new ERM algorithm employs the idea of the adaptive LASSO-based variable selection method to preserve the sparsity property of GRN.
1 | matbaseERM(y, initA, initC, initQ, initR, initx, initV, max_iter = 100, diagQ = 0, diagR = 0, ARmode = 0, s.prop = 0.1^6, ...)
|
y |
y[,t] the observation vector at time t |
initA |
the initial system matrix |
initC |
the initial observation matrix |
initQ |
the initial variance for normally distributed system noise |
initR |
the initial variance for normally distributed measurement noise |
initx |
mean value vector for initial state x0 |
initV |
covariance matrix for initial state x0 |
max_iter |
specifies the maximum number of EM iterations (default 100) |
diagQ |
boolean value. 1 specifies that the Q matrix should be diagonal. Default value is 0,indicating fixed at true value. |
diagR |
boolean value. 1 specifies that the R matrix should be diagonal. Default value is 0,indicating fixed at true value. |
ARmode |
boolean value. 1 specifies that C=I, R=0. i.e., a Gauss-Markov process. (Default 0). |
s.prop |
|
... |
more optional arguments |
estA |
the estimated high-dimensional sparse system matrix A |
estC |
the estimated observation matrix |
estQ |
the estimated variance for normally distributed system noise |
estR |
the estimated variance for normally distributed measurement noise |
estX |
the mean value for state vector |
estV |
the covariance matrix for state vector |
LL |
the log likelihood vector |
xcurve |
smoothed real-valued hidden state variable vector |
bic |
BIC |
num_iter |
the number of iteration has been processed |
Yu Gu
Maintainer: Yu Gu <yu_gu@urmc.rochester.edu>
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771.
Green, P. J. (1990). On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.
Harrison, J., & West, M. (1999). Bayesian Forecasting & Dynamic Models. Springer.
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476), 1418-1429.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.