rowbaseEMR: row-based Expectation-Regularization-Maximization(ERM)...

Description Usage Arguments Value Author(s) References

Description

A high-dimensional linear State Space Model(SSM) with a new Expectation-Regularization-Maximization(ERM) algorithm to construct the dynamic Gene Regularization Network(GRN). The new ERM algorithm employs the idea of the adaptive LASSO-based variable selection method to preserve the sparsity property of GRN.

Usage

1
rowbaseEMR(y, initA, initC, initQ, initR, initx, initV, max_iter = 100, diagQ = FALSE, diagR = FALSE, ARmode = FALSE, s.prop = 0.1^6, ...)

Arguments

y

y[,t] the observation vector at time t

initA

the initial system matrix

initC

the initial observation matrix

initQ

the initial variance for normally distributed system noise

initR

the initial variance for normally distributed measurement noise

initx

mean value vector for initial state x0

initV

covariance matrix for initial state x0

max_iter

specifies the maximum number of EM iterations (default 100)

diagQ

boolean value. 1 specifies that the Q matrix should be diagonal. Default value is 0,indicating fixed at true value.

diagR

boolean value. 1 specifies that the R matrix should be diagonal. Default value is 0,indicating fixed at true value.

ARmode

boolean value. 1 specifies that C=I, R=0. i.e., a Gauss-Markov process. (Default 0).

s.prop
...

more optional arguments

Value

estA

the estimated high-dimensional sparse system matrix A

estC

the estimated observation matrix

estQ

the estimated variance for normally distributed system noise

estR

the estimated variance for normally distributed measurement noise

estX

the mean value for state vector

estV

the covariance matrix for state vector

LL

the log likelihood vector

xcurve

smoothed real-valued hidden state variable vector

bic

BIC

num_iter

the number of iteration has been processed

Author(s)

Yu Gu

Maintainer: Yu Gu <yu_gu@urmc.rochester.edu>

References

Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771.

Green, P. J. (1990). On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

Harrison, J., & West, M. (1999). Bayesian Forecasting & Dynamic Models. Springer.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476), 1418-1429.


ygu427/HDSSM documentation built on May 4, 2019, 2:33 p.m.