library(tfruns)
# runs <- tuning_run("/home/chetbo/GENERIC/dementiaproject/inst/main_cnn_4_class.R", flags = list(
# preprocess = FALSE,
# raw_dir = "data_raw_t1",
# width_target = c(224),
# height_target = c(224),
# loss_function = c("sparse_categorical_crossentropy"), #sparse_categorical_crossentropy binary_crossentropy
# optimizer_var = c("adam"),
# learning_rate = c(0.00002), # 0.00002, 0.00001
# metrics_var = c("sparse_categorical_accuracy"), #categorical_accuracy-AUC
# cut_list = c("136_138_140_142_144"),
# nb_epoch = c(50),
# batch_size_var = c(40),
# val_split = c(0.2),
# test_split = c(0.2),
# class_number = 4,
# nb_augment = 1000,
# redistrib = FALSE),
# sample = NULL, confirm = FALSE, echo = FALSE, runs_dir = "/srv/OASIS_DATA/dropout_tuning")
#
# path_data <- "/srv/OASIS_DATA/"
# save(runs, file = file.path(path_data, "results", "res_4_classe.Rdata"))
runs <- tuning_run("/home/chetbo/GENERIC/dementiaproject/inst/fine_tuning_2_class.R", flags = list(
learning_rate = c(2e-5, 1e-6)), # 0.00002, 0.00001),
sample = NULL, confirm = FALSE, echo = FALSE, runs_dir = "/srv/OASIS_DATA/dropout_tuning")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.