accuracy | Summary and detail of accuracy measures |
accuracy_detail | Details (horizon specific) accuracy measures |
accuracy_summary | Summary of accuracy measures |
ae | Absolut error (AE) |
ape | Absolute percentage error (APE) |
ase | Absolut scaled error (ASE) |
auto_arima | Auto Arima |
auto_ces | Auto Complex exponential Smoothing |
auto_damped | Auto Damped Exponentional Smoothing |
auto_dotm | Auto Theta dotm |
auto_ets | Auto ETS |
auto_holt | Auto Holt Exponential Smoothing |
auto_naive | Auto Naive |
auto_nnar | Auto autoregressive neural networke |
auto_ses | Auto Simple Exponential Smoothing |
auto_shd | Auto SHD Combo |
auto_snaive | Auto seasonal naive |
auto_theta | Auto Tehta |
auto_thetaf | Auto thetaf |
boxcox | BoxCox transformation |
combine_theta_lines | Theta forecasts |
date_increment | Increment for date sequence |
decimal_to_date | Decimal to date |
diff | Differencing of a vector |
dot-rx_forecast | Wrapper to forecast with RevoscaleR |
exp_inverse | Calculates the exponential inverse |
forecast_forunco | Forunco function for batch forecasting in R |
forunco | Forunco combination approach |
generic_combine | Generic combination function |
generic_forecast | Wrapper to preprecess, predict and postprocess forecasts |
gmae | Geomatric mean absolute error (GMAE) |
g_mean | Geometric Mean |
gmrae | Geomatric mean relative absolut error (GMRAE) |
inv_boxcox | Inverse Boxcox transformation |
inv_diff | Inverses diff transformations |
inverse | Calculates the inverse |
inv_log | Inverse of log transformation |
inv_no_pp | Dummy inv PP |
inv_normalize | Inverses normalization |
inv_scale | Inverses scaling |
inv_seasonal_adjustment | Inversed seasonal adjustment |
is_seasonal | Seasonality test |
log | Log tranformation |
mae | Mean absolute error (MAE) |
mape | Mean absolute percentage error (MAPE) |
mase | Mean absolut scaled error (MASE) |
mdrae | Median relative absolut error (MRAE) |
mrae | Mean relative absolut error (MRAE) |
mse | Mean square error (MSE) |
msis | Mean Scaled interval score (MSIS) |
no_pp | Dummy PP |
normalize | Normalize vector |
plot_forunco | Plot of forunco object |
pool_mean | Calculates the mean of the pool |
pool_median | Calculates the mean of the pool |
preprocessor | Preprocessor environment |
produce_forecasts | Produces forecasts |
rae | Relative absolut error (RAE) |
replace_outliers | Replacement of outliers |
rmse | Root mean square error (MSE) |
rx_sql_forunco | forunco function for SQL Server compute context |
sape | Symmetric absolute percentage error (sAPE) |
sase | Seasonal absolut scaled error (ASE) |
scale | Scale vector |
se | Squared error (SE) |
seasonal_adjustment | Conductes a seasonal adjustment |
shd | Conventional SHD Combination |
simple_combination | Simple combination of univariate time series forecasting... |
smape | Symmetric mean absolute percentage error (sMAPE) |
smase | Seasonal Mean absolut scaled error (sMASE) |
squared_inverse | Calculates the squared inverse |
theta_aea | AEA theta model |
theta_aem | AEM theta model |
theta_ala | ALM theta model |
theta_alm | ALM theta model |
theta_fit | Theta fit |
theta_forecast | theta forecast |
theta_line | Theta line |
theta_line_zero | Theta line zero |
theta_mea | MEA theta model |
theta_mem | MEM theta model |
theta_mla | MLA theta model |
theta_mlm | MLM theta model |
tidier_ts | Tidy time series in data frame |
time_sequence | Time sequence |
validation_split | Validation Split |
weighted_average | Averaging forecasts using weights |
weight_error | Weighting and pooling methods on the basis of their error |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.