Description Usage Arguments Value Examples
View source: R/ts_combination.R
Combination of univariate time seris methods, using a combination operator of choice for the mean forecasts and prediction intervals.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  | forunco(
  y,
  h,
  levels = c(95),
  methods = c("auto_ets", "auto_arima", "auto_thetaf"),
  pp_methods = c("boxcox"),
  point_combination = "median",
  pi_combination_upper = "median",
  pi_combination_lower = "median",
  pool_limit = length(methods),
  error_fun = "rmse",
  weight_fun = "inverse",
  val_h = h,
  sov_only = F,
  max_years = 30,
  val_min_years = 4,
  cv_min_years = 5,
  cv_max_samples = 3,
  allow_negatives = F,
  remove_outliers = F,
  ...
)
 | 
y | 
 Time series object with historical values.  | 
h | 
 Horizons to be predicted.  | 
levels | 
 Prediction interval levels. Optional, default   | 
methods | 
 Methods to be combined. Optional, default   | 
point_combination | 
 Point forecast combination operator. Optional, default   | 
pi_combination_upper | 
 combination operator of the upper bound of the prediction intervals. Optional, default   | 
pi_combination_lower | 
 combination operator for the lower bounds of the prediction intervals. Optional, default   | 
pool_limit | 
 number of methods selected from the pool to reach the final forecasts. Optional, default   | 
error_fun | 
 error function to determine the validation performance Optional, default   | 
weight_fun | 
 weight function for calculating the definitive weights for combination. Optional, default   | 
val_h | 
 The horizon for the validation samples. Optional, default   | 
sov_only | 
 Flag indicating whether only single origin validation should be considered. Optional, default   | 
max_years | 
 Maxmium of years to consider during model fitting. Optional, default   | 
val_min_years | 
 Minimum years required to conduct single origin validation. Optional, default   | 
cv_min_years | 
 Minimum years required to conduct cross-origin validation. Optional, default   | 
cv_max_samples | 
 Maximum samples that should be considered during cross-validation, i.e. 3 indicates the algorithm validates from 3 origins. Optional, default   | 
allow_negatives | 
 Flag indicating whether to allow negative values or not. Optional, default   | 
remove_outliers | 
 Flag indicating whether to automatically remove outliers form the time series. default   | 
... | 
 passed to the forecasting functions  | 
combined forecasts of time series y including confidence intervals
1 2 3 4 5  | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.