Description Usage Arguments Value Examples
Implements the forunco function for optimal parallelisation with machine learning services of sql server 2017
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | forecast_forunco(
ts_col,
h = 12,
num_cores = NULL,
num_cores_ignore = 1,
prog_bar = T,
levels = c(95),
methods = c("auto_ets", "auto_arima", "auto_dotm"),
point_combination = "median",
pi_combination_upper = "median",
pi_combination_lower = "median",
pool_limit = length(methods),
error_fun = "rmse",
weight_fun = "inverse",
val_h = h,
sov_only = F,
max_years = 30,
val_min_years = 4,
cv_min_years = 5,
cv_max_samples = 3,
allow_negatives = F,
...
)
|
ts_col |
list of time series objects |
h |
number of horizons to predict |
num_cores |
number of cores to be used; default: NULL (all cores) |
num_cores_ignore |
number of cores to be ignored for e.g. OS; default: 1 |
prog_bar |
boolean, whether or not a progress bar should be displyed |
levels |
Prediction interval levels. Optional, default |
methods |
Methods to be combined. Optional, default |
point_combination |
Point forecast combination operator. Optional, default |
pi_combination_upper |
combination operator of the upper bound of the prediction intervals. Optional, default |
pi_combination_lower |
combination operator for the lower bounds of the prediction intervals. Optional, default |
pool_limit |
number of methods selected from the pool to reach the final forecasts. Optional, default |
error_fun |
error function to determine the validation performance Optional, default |
weight_fun |
weight function for calculating the definitive weights for combination. Optional, default |
val_h |
The horizon for the validation samples. Optional, default |
sov_only |
Flag indicating whether only single origin validation should be considered. Optional, default |
max_years |
Maxmium of years to consider during model fitting. Optional, default |
val_min_years |
Minimum years required to conduct single origin validation. Optional, default |
cv_min_years |
Minimum years required to conduct cross-origin validation. Optional, default |
cv_max_samples |
Maximum samples that should be considered during cross-validation, i.e. 3 indicates the algorithm validates from 3 origins. Optional, default |
allow_negatives |
Flag indicating whether to allow negative values or not. Optional, default |
... |
list with mean, pis and data_frame containing the predicted values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ## Not run:
library(tritelligence)
library(Mcomp)
m3 <- M3[2000:2025]
#a time series colllection has n elements, each of which is a time series
# object.
ts_col <- lapply(m3, function(x) {x$x})
result <- forecast_forunco(ts_col)
preds[[1]]
$mean
[1] 5054.439 5048.170 5048.170 5048.170 5048.170 5048.170 5048.170 5048.170 5048.170 5048.170 5048.170 5048.170
$upper
[1] 6348.204 6883.349 7294.081 7640.378 7945.488 8221.338 8475.014 8711.134 8932.906 9142.665 9342.174 9532.805
$lower
[1] 3760.6740 3149.1485 2453.7666 2132.0499 2054.5814 1887.5394 1633.8633 1397.7433 1175.9717 894.6316 766.7032 576.0728
$preds
# A tibble: 36 X 3
date type value
<date> <chr> <dbl>
1989-07-02 Point 5054.439
1989-08-02 Point 5048.170
1989-09-02 Point 5048.170
1989-10-02 Point 5048.170
1989-11-02 Point 5048.170
1989-12-02 Point 5048.170
1990-01-02 Point 5048.170
1990-02-02 Point 5048.170
1990-03-02 Point 5048.170
1990-04-02 Point 5048.170
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.