rx_sql_forunco: forunco function for SQL Server compute context

Description Usage Arguments Value Examples

View source: R/ts_forecast.R

Description

Implements the forunco function for optimal parallelisation with machine learning services of sql server 2017

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
rx_sql_forunco(
  connection_string,
  table,
  num_cores = 8,
  h = 2,
  levels = c(95),
  methods = c("auto_ets", "auto_arima", "auto_thetaf"),
  pp_methods = c("boxcox"),
  point_combination = "median",
  pi_combination_upper = "median",
  pi_combination_lower = "median",
  pool_limit = length(methods),
  error_fun = "rmse",
  weight_fun = "inverse",
  val_h = h,
  sov_only = F,
  max_years = 30,
  val_min_years = 4,
  cv_min_years = 5,
  cv_max_samples = 3,
  allow_negatives = F,
  ...
)

Arguments

connection_string

mandatory: Connectionstring to the database

table

mandatory: Table name that is the source for the forecasting objects

num_cores

number of cores to be used, default 8.

h

number of horizons to predict.

levels

Prediction interval levels. Optional, default c(95).

methods

Methods to be combined. Optional, default auto_ets, auto_arima, auto_dotm.

point_combination

Point forecast combination operator. Optional, default meidan.

pi_combination_upper

combination operator of the upper bound of the prediction intervals. Optional, default max.

pi_combination_lower

combination operator for the lower bounds of the prediction intervals. Optional, default min.

pool_limit

number of methods selected from the pool to reach the final forecasts. Optional, default length(methods).

error_fun

error function to determine the validation performance Optional, default rmse.

weight_fun

weight function for calculating the definitive weights for combination. Optional, default inverse

val_h

The horizon for the validation samples. Optional, default h.

sov_only

Flag indicating whether only single origin validation should be considered. Optional, default TRUE.

max_years

Maxmium of years to consider during model fitting. Optional, default 30.

val_min_years

Minimum years required to conduct single origin validation. Optional, default 4.

cv_min_years

Minimum years required to conduct cross-origin validation. Optional, default 5.

cv_max_samples

Maximum samples that should be considered during cross-validation, i.e. 3 indicates the algorithm validates from 3 origins. Optional, default 3.

allow_negatives

Flag indicating whether to allow negative values or not. Optional, default FALSE.

...

Value

forecest data.frame

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
## Not run: 
connection_string <- "Server=LTYMA01\\QWERTZ;Database=FORECASTING_DATA;UID=ruser;PWD=ruser;"
table <- paste0("m3.vw_Micro")
result <- rx_sql_forunco(connection_string=connection_string, table=table)
#    .id  TSN       date  type       value
#     P1 1403 1994-03-02 Point  1468.48451
#     P1 1403 1994-03-30 Point  1468.48451
#     P1 1403 1994-04-30 Point  1468.48451
#     P1 1403 1994-05-30 Point  1468.48451
#     P1 1403 1994-06-30 Point  1468.48451

## End(Not run)

yvesmauron/univariate-time-series-forecasting documentation built on March 2, 2020, 12:20 a.m.