Description Usage Arguments Value Examples
Implements the forunco function for optimal parallelisation with machine learning services of sql server 2017
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | rx_sql_forunco(
connection_string,
table,
num_cores = 8,
h = 2,
levels = c(95),
methods = c("auto_ets", "auto_arima", "auto_thetaf"),
pp_methods = c("boxcox"),
point_combination = "median",
pi_combination_upper = "median",
pi_combination_lower = "median",
pool_limit = length(methods),
error_fun = "rmse",
weight_fun = "inverse",
val_h = h,
sov_only = F,
max_years = 30,
val_min_years = 4,
cv_min_years = 5,
cv_max_samples = 3,
allow_negatives = F,
...
)
|
connection_string |
mandatory: Connectionstring to the database |
table |
mandatory: Table name that is the source for the forecasting objects |
num_cores |
number of cores to be used, default |
h |
number of horizons to predict. |
levels |
Prediction interval levels. Optional, default |
methods |
Methods to be combined. Optional, default |
point_combination |
Point forecast combination operator. Optional, default |
pi_combination_upper |
combination operator of the upper bound of the prediction intervals. Optional, default |
pi_combination_lower |
combination operator for the lower bounds of the prediction intervals. Optional, default |
pool_limit |
number of methods selected from the pool to reach the final forecasts. Optional, default |
error_fun |
error function to determine the validation performance Optional, default |
weight_fun |
weight function for calculating the definitive weights for combination. Optional, default |
val_h |
The horizon for the validation samples. Optional, default |
sov_only |
Flag indicating whether only single origin validation should be considered. Optional, default |
max_years |
Maxmium of years to consider during model fitting. Optional, default |
val_min_years |
Minimum years required to conduct single origin validation. Optional, default |
cv_min_years |
Minimum years required to conduct cross-origin validation. Optional, default |
cv_max_samples |
Maximum samples that should be considered during cross-validation, i.e. 3 indicates the algorithm validates from 3 origins. Optional, default |
allow_negatives |
Flag indicating whether to allow negative values or not. Optional, default |
... |
forecest data.frame
1 2 3 4 5 6 7 8 9 10 11 12 | ## Not run:
connection_string <- "Server=LTYMA01\\QWERTZ;Database=FORECASTING_DATA;UID=ruser;PWD=ruser;"
table <- paste0("m3.vw_Micro")
result <- rx_sql_forunco(connection_string=connection_string, table=table)
# .id TSN date type value
# P1 1403 1994-03-02 Point 1468.48451
# P1 1403 1994-03-30 Point 1468.48451
# P1 1403 1994-04-30 Point 1468.48451
# P1 1403 1994-05-30 Point 1468.48451
# P1 1403 1994-06-30 Point 1468.48451
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.