Description Usage Arguments Value Author(s) References Examples
View source: R/SAMEclustering.R
SAME (Single-cell RNA-seq Aggregated clustering via Mixture model Ensemble): Cluster ensemble for single-cell RNA-seq data
1 | SAMEclustering(Y, MAX = NULL, rep, SEED = 1)
|
Y |
a J*N matrix with J individual clustering methods and N cells. |
MAX |
defines the maximum number of clusters used for cluster ensemble. Default is the maximum cluster number estimated by all the single solutions. |
rep |
defines how many times wants to run the cluster ensemble step. |
SEED |
sets the seed of the random number generator. Setting the seed to a fixed value can produce reproducible cluster ensemble results. |
SAMEclustering returns a list object containing:
AICcluster: optimal ensemble clustering result determined by Akaike information criterion (AIC)
final_k_AIC: optimal cluster number determined by AIC
BICcluster: optimal ensemble clustering result determined by Bayesian information criterion (BIC)
final_k_BIC: optimal cluster number determined by BIC
Ruth Huh <rhuh@live.unc.edu>, Yuchen Yang <yyuchen@email.unc.edu>, Yun Li <yunli@med.unc.edu>
Ruth Huh, Yuchen Yang, Yun Li. SAME 2018
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # Load the example data data_SAME
data("data_SAME")
# Zheng dataset
# Run individual_clustering
cluster.result <- individual_clustering(inputTags=data_SAME$Zheng.expr, SEED=123)
# Cluster ensemble using SAME clustering:
cluster.ensemble <- SAMEclustering(Y = t(cluster.result), rep = 3, SEED=123)
# Biase dataset
# Run individual_clustering
cluster.result <- individual_clustering(inputTags = data_SAME$Biase.expr, datatype = "FPKM", seurat_min_cell = 200, resolution_min = 1.2, tsne_min_cells = 200, tsne_min_perplexity = 10, SEED=123)
# Cluster ensemble using SAME clustering:
cluster.ensemble <- SAMEclustering(Y=t(cluster.result), rep = 3, SEED=123)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.