Description Usage Arguments Value Author(s) References Examples
View source: R/SAMEclustering.R
This function performs single-cell clustering using five state-of-the-art methods, SC3, CIDR, Seurat, tSNE+kmeans and SIMLR.
1 2 3 4 5 | individual_clustering(inputTags, mt_filter = TRUE, mt.pattern = "^MT-", mt.cutoff = 0.1,
percent_dropout = 10, SC3 = TRUE, gene_filter = FALSE, svm_num_cells = 5000, CIDR = TRUE, nPC.cidr = NULL,
Seurat = TRUE, nGene_filter = TRUE, low.genes = 200, high.genes = 8000, nPC.seurat = NULL, resolution = 0.7,
tSNE = TRUE, dimensions = 3, perplexity = 30, tsne_min_cells = 200, tsne_min_perplexity = 10, var_genes = NULL,
SIMLR = TRUE, diverse = TRUE, SEED = 1)
|
inputTags |
a G*N matrix with G genes and N cells. |
mt_filter |
is a boolean variable that defines whether to filter outlier cells according to mitochondrial gene percentage. Default is "TRUE". |
mt.pattern |
defines the pattern of mitochondrial gene names in the data, for example, |
mt.cutoff |
defines a high cutoff of mitochondrial percentage (Default is 0.1) that cells having higher percentage of mitochondrial gene are filtered out, when |
percent_dropout |
defines a low cutoff of gene percentage that genes expressed in less than |
SC3 |
a boolean variable that defines whether to cluster cells using SC3 method. Default is "TRUE". |
gene_filter |
is a boolean variable that defines whether to perform gene filtering before SC3 clustering, when |
svm_num_cells |
if |
CIDR |
is a boolean parameter that defines whether to cluster cells using CIDR method. Default is "TRUE". |
nPC.cidr |
defines the number of principal coordinates used in CIDR clustering, when |
Seurat |
is a boolean variable that defines whether to cluster cells using Seurat method. Default is "TRUE". |
nGene_filter |
is a boolean variable that defines whether to filter outlier cells according to unique gene count before Seurat clustering. Default is "TRUE". |
low.genes |
defines a low cutoff of unique gene counts (Default is 200) that cells expressing less than 200 genes are filtered out, when |
high.genes |
defines a high cutoff of unique gene counts (Default is 8000) that cells expressing more than 8000 genes are filtered out, when |
nPC.seurat |
defines the number of principal components used in Seurat clustering, when |
resolution |
defines the value of resolution used in Seurat clustering, when |
tSNE |
is a boolean variable that defines whether to cluster cells using t-SNE + k-means method. Default is "TRUE". |
dimensions |
sets the number of dimensions wanted to be retained in t-SNE step. Default is 3. |
perplexity |
sets the perplexity parameter for t-SNE dimension reduction. Default is 30 when number of cells |
tsne_min_cells |
defines the number of cells in input dataset below which |
tsne_min_perplexity |
sets the perplexity parameter of t-SNE step for small datasets (number of cells |
var_genes |
defines the number of variable genes used by t-SNE analysis, when |
SIMLR |
is a boolean variable that defines whether to cluster cells using t-SNE + k-means method. Default is "TRUE". |
diverse |
is a boolean parameter that defines whether to take a subset of 4 out of 5 most diverse sets of clustering. Can only be implemented when all 5 booleans for individual methods are set to TRUE. Default is "TRUE". |
SEED |
sets the seed of the random number generator. Setting the seed to a fixed value can produce reproducible clustering results. |
a matrix of indiviudal clustering results is output, where each row represents the cluster results of each method.
Ruth Huh <rhuh@live.unc.edu>, Yuchen Yang <yyuchen@email.unc.com>, Yun Li <yunli@med.unc.edu>
Huh, R., Yang, Y., Jiang, Y., Shen, Y., Li, Y. (2020) SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble. Nucleic Acid Research, 48: 86-95
1 2 3 4 5 6 | # Load the example data data_SAME
data("data_SAME")
# Zheng dataset
# Run individual_clustering
cluster.result <- individual_clustering(inputTags=data_SAME$Zheng.expr, SEED=123)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.