Description Usage Arguments Value
Creates a data list with JABBA input and settings to be passed to fit_jabba()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | build_jabba(
catch = NULL,
cpue = NULL,
se = NULL,
assessment = "bet_example",
scenario = "test",
model.type = c("Schaefer", "Fox", "Pella", "Pella_m"),
add.catch.CV = TRUE,
catch.cv = 0.1,
Plim = 0,
r.dist = c("lnorm", "range"),
r.prior = c(0.2, 0.5),
K.dist = c("lnorm", "range"),
K.prior = NULL,
psi.dist = c("lnorm", "beta"),
psi.prior = c(0.9, 0.25),
b.prior = c(FALSE, 0.3, NA, c("bk", "bbmsy", "ffmsy")[1]),
BmsyK = 0.4,
shape.CV = 0.3,
sets.q = 1:(ncol(cpue) - 1),
sigma.est = TRUE,
sets.var = 1:(ncol(cpue) - 1),
fixed.obsE = ifelse(is.null(se), 0.1, 0.001),
sigma.proc = TRUE,
proc.dev.all = TRUE,
igamma = c(4, 0.01),
projection = FALSE,
TACs = NULL,
TACint = NULL,
imp.yr = NULL,
pyrs = NULL,
P_bound = c(0.02, 1.3),
sigmaobs_bound = 1,
sigmaproc_bound = 0.2,
q_bounds = c(10^-30, 1000),
K_bounds = c(0.01, 10^10),
KOBE.plot = TRUE,
KOBE.type = c("ICCAT", "IOTC")[2],
Biplot = FALSE,
harvest.label = c("Hmsy", "Fmsy")[2],
catch.metric = "(t)"
)
|
catch |
catch time series, requires data.frame(year, catch) |
cpue |
cpue time series, requires data.frame(year, cpue.1,cpue.2,...,cpue.N) |
se |
optional log standard error (CV) time series,requires data.frame(year, se.1,se.2,...,se.N) |
assessment |
= "example", |
scenario |
= "s1", |
model.type |
= c("Schaefer","Fox","Pella","Pella_m"), |
add.catch.CV |
= c(TRUE,FALSE) option estimate catch with error |
catch.cv |
catch error on log-scale (default = 0.1) |
Plim |
= 0, # Set Plim = Blim/K where recruitment may become impaired (e.g. Plim = 0.25) PRIORS |
r.dist |
= c("lnorm","range"), # prior distribution for the intrinsic rate population increas |
r.prior |
= c(0.2,0.5), # prior(mu, lod.sd) for intrinsic rate of population increase |
K.dist |
= c("lnorm","range"), # prior distribution for unfished biomass K = B0 |
K.prior |
= NULL, # prior(mu,CV) for the unfished biomass K = B0 |
psi.dist |
= c("lnorm","beta"), # prior distribution for the initial biomass depletion B[1]/K |
psi.prior |
= c(0.9,0.25), # prior(mu, CV) for the initial biomass depletion B[1]/K |
b.prior |
= c(FALSE,0.3,NA,c("bk","bbmy","ffmsy")[1]), # depletion prior set as d.prior = c(mean,cv,yr,type=c("bk","bbmsy")) |
BmsyK |
= 0.4, # Inflection point of the surplus production curve, requires Pella-Tomlinson (model = 3 | model 4) |
shape.CV |
= 0.3, # CV of the shape m parameters, if estimated with Pella-Tomlinson (Model 4) VARIANCE options |
sets.q |
= 1:(ncol(cpue)-1), # assigns catchability q to different CPUE indices. Default is each index a seperate q |
sigma.est |
= TRUE, # Estimate additional observation variance |
sets.var |
= 1:(ncol(cpue)-1), # estimate individual additional variace |
fixed.obsE |
= c(0.01), # Minimum fixed observation erro |
sigma.proc |
= TRUE, # TRUE: Estimate observation error, else set to value |
proc.dev.all |
= TRUE, # TRUE: All year, year = starting year |
igamma |
= c(3,0.01), # prior for process error variance, default informative igamma ~ mean 0.07, CV 0.4 |
projection |
= FALSE, # Switch on by Projection = TRUE |
TACs |
= NULL |
TACint |
= NULL, # default avg last 3 years |
imp.yr |
= NULL, # default last year plus ONE |
pyrs |
= NULL, # Set number of projections years |
P_bound |
= c(0.02,1.3), # Soft penalty bounds for b/k |
sigmaobs_bound |
= 1, # Adds an upper bound to the observation variance |
sigmaproc_bound |
= 0.2, # Adds an upper bound to the process variance |
KOBE.plot |
= TRUE, # Produces JABBA Kobe plot |
KOBE.type |
= c("ICCAT","IOTC")[2], # ICCAT uses 3 colors; IOTC 4 (incl. orange) |
harvest.label |
= c("Hmsy","Fmsy")[2], # choose label preference H/Hmsy versus Fmsy |
catch.metric |
"(t)" # Define catch input metric e.g. (tons) "000 t" |
q_bounds= |
c(10^-30,1000), # Defines lower and upper bounds for q |
K_bounds= |
c(0.01,10^10), # Defines lower and upper bounds for q |
Biplot= |
FALSE, # Produces a "post-modern" biplot with buffer and target zones (Quinn & Collie 2005) |
List to be used as data input to JABBA JAGS model.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.