differential_expression: Analyze Differential Features

differential_expressionR Documentation

Analyze Differential Features

Description

Find differential TSSs or TSRs from previously generated edgeR or DESeq2 model.

Usage

differential_expression(
  experiment,
  data_type = c("tss", "tsr", "tss_features", "tsr_features"),
  comparison_name,
  comparison_type,
  comparison,
  shrink_lfc = FALSE
)

Arguments

experiment

TSRexploreR object.

data_type

Whether the input was generated from TSSs ('tss') or TSRs ('tsr').

comparison_name

The name given to the comparison when stored back into the TSRexploreR object.

comparison_type

For DEseq2, either 'contrast' or 'name'. For edgeR, either 'contrast' or 'coef'.

comparison

For DESeq2, the contrast or name. For edgeR, the coefficients or contrasts.

shrink_lfc

For DESeq2, whether the log2 fold changes are shrunk (TRUE) or not (FALSE).

Details

Calculatse the differential TSSs or TSRs for the desired contrast. 'comparison_type' corresponds to the way the comparison will be performed, with edgeR having the 'contrast' and 'coef' options, and DESeq2 having the 'contrast' and 'name' options. The actual contrast is specified with 'comparison', the format of which should match with the option provided to 'comparison_type'. If DESeq2 is used and 'shrink_lfc' is TRUE, apeglm is used to shrink the Log2 fold changes to mitigate the effect size of genes with lower levels of expression. The results for the contrast will be stored back into the TSRexploreR object with the name provided to 'comparison_name'.

Value

TSRexploreR object with results for given contrast.

See Also

fit_de_model to fit DEseq2 or edgeR model to data.

Examples

data(TSSs)
sample_sheet <- data.frame(
  sample_name=c(
    sprintf("S288C_D_%s", seq_len(3)),
    sprintf("S288C_WT_%s", seq_len(3))
  ),
  file_1=rep(NA, 6), file_2=rep(NA, 6),
  condition=c(
    rep("Diamide", 3),
    rep("Untreated", 3)
  )
)

exp <- TSSs %>%
  tsr_explorer(sample_sheet=sample_sheet) %>%
  format_counts(data_type="tss")

# Differential TSSs with DESeq2.
exp <- fit_de_model(exp, data_type="tss", formula=~condition, method="edgeR")

exp <- differential_expression(
  exp, data_type="tss", 
  comparison_name="Diamide_vs_Untreated",
  comparison_type="coef",
  comparison=2
)


zentnerlab/TSRexploreR documentation built on Dec. 30, 2022, 10:27 p.m.