Description Usage Arguments Value Author(s) References
View source: R/RNAseqAnalysis.R
Difference analysis of transcriptome sequencing
1 | DEAnalysis(countDataRaw, Group, control, filter = TRUE, lognormdata = TRUE)
|
countDataRaw |
Expression matrix of transcriptome sequencing |
Group |
a vector of sample group |
control |
Set up control group |
filter |
a logical ,filter gene use cpm |
lognormdata |
a logical,rlogTransformation for normdata |
a list,data frame of Difference analysis,normlized Expression matrix , and normlized Expression matrix after log Transformation
zexl
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics. 2010 Jan 1;26(1):139-40.
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK.
limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic acids research. 2015 Jan 20;
43(7):e47-e47.
Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome biology. 2014 Dec 5;
15(12):550.
@author zexl
@examples
DeResult<-DEAnalysis(Counts,
group,control='Z')
DEGAll<-DeResult[[1]]
normData<-DeResult[[2]]
normData_log <- assay(
rlogTransformation(DeResult[[3]])
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.