tool.coalesce.find: Find overlapping clusters

Description Usage Arguments Value Author(s) References Examples

View source: R/cle.LS.R

Description

tool.coalesce.find finds overlapped clusters of the given data according to a given overlapping ratio by using tool.overlap and tool.cluster, respectively.

Usage

1

Arguments

data

a list including ITEM identities and their GROUP identities

rmax

maximum overlap not coalesced

Value

data list including clustering results and following components:

CLUSTER

cluster label

NODE

item (node) name

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
## Generate item and group labels for 100 items:
## Assume that unique gene number (items) is 60:
members <- 1:100 ## will be updated
modules <- 1:100 ## will be updated
set.seed(1)
for (i in 1:10){
## each time pick 10 items (genes) from 60 unique item labels
members[(i*10-9):(i*10)] <- sample(60,10) 
}
## Assume that unique group labels is 30:
for (i in 1:10){
## each time pick 10 items (genes) from 30 unique group labels
modules[(i*10-9):(i*10)] <- sample(30, 10)
}
rcutoff <- 0.33
ncore <- length(members)
## Default output.
res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members,
stringsAsFactors=FALSE)
## Iterative merging and trimming.
res$COUNT <- 0.0
while(TRUE) {
clust <- tool.coalesce.find(res, rcutoff)    
if(is.null(clust)) break
res <- tool.coalesce.merge(clust, ncore)
}

zeynebkurtUCLA/Mergeomics documentation built on May 14, 2019, 1:59 a.m.