View source: R/debiased_ivx_est.R
debias_ivx | R Documentation |
y_t = w_{t-1} theta + u_t
where data is already aligned to incorporate the lagged regressor
debias_ivx(
w,
y,
d_ind,
intercept = FALSE,
standardize = TRUE,
c_z = 5,
a = 0.9,
standardize_iv = TRUE,
iid = TRUE,
post_inference = TRUE,
lambda_choice = vector("list", length(d_ind) + 1),
lambda_seq = vector("list", length(d_ind) + 1),
train_method = "timeslice",
nlambda = 100,
lambda_min_ratio = 1e-04,
k = 10,
initial_window = ceiling(nrow(w) * 0.7),
horizon = 1,
fixed_window = TRUE,
skip = 0,
zhang_zhang = TRUE
)
w |
Matrix of all regressors |
y |
Vector of dependent variable |
d_ind |
Index for inference targets |
intercept |
Whether to include intercept in Lasso regression |
c_z |
Parameter in constructing IV (Phillips and Lee, 2016)
|
a |
Parameter in constructing IV (Phillips and Lee, 2016) |
standardize_iv |
Whether to standardize the IV |
iid |
boolean indicating whether we want to adjust the long-run variance |
post_inference |
boolean indicating whether to conduct post-lasso inference |
lambda_choice |
Choice of lambda for Lasso regression; List of length length(d_ind) + 1: each element = NULL or = a number if user has a specific choice of tuning parameter |
lambda_seq |
pre-specified sequence of tuning parameter for parameter tuning; Useful in calibration of tuning parameter based on the rate conditions in the asymptotic theory; List of length length(d_ind) + 1: Each element = NULL or a vector of tuning parameters |
train_method |
The parameter tuning method
|
nlambda |
number of candidate lambdas |
lambda_min_ratio |
# lambda_min_ratio * lambda_max = lambda_min (default: 0.0001): Determines the search range of lambda |
k |
k-fold cv if "cv" is chosen (default: 10) |
initial_window |
length of initial window for "timeslice" method |
horizon |
length of horizon for "timeslice" method |
fixed_window |
whether to use fixed window for "timeslice" method |
skip |
length of skip for "timeslice" method |
zhangzhang |
boolean indicating whether to conduct Zhang and Zhang (2014) debiased IVX |
A list contains
theta_hat_las |
Estimate of delta from Lasso regression |
theta_hat_ivx |
Estimate of delta from debiased IVX |
sigma_hat |
Estimate of standard error of theta_hat_ivx |
lambda_hat |
Chosen tuning parameter for Lasso regression |
phi_hat |
Estimate of the frequency of 0s and L1 norm of std/nonstd coefficients in the second stage |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.