train_talasso | R Documentation |
If all variables are killed in the first step: return a random number
If more than 1 variables are left: just repeat the training process for alasso
If only 1 variable remained: use a brute-force process do the cross-validation.
FOR FUTURE WORK: INCORPORATE TALASSO INTO CARET FRAMEWORK.
train_talasso(
x,
y,
b_first,
gamma = 1,
intercept = TRUE,
scalex = FALSE,
train_method = "timeslice",
lambda_seq = NULL,
nlambda = 100,
lambda_min_ratio = 1e-04,
k = 10,
initial_window = ceiling(nrow(x) * 0.7),
horizon = 1,
fixed_window = TRUE,
skip = 0
)
x |
Predictor matrix (n-by-p matrix) |
y |
Response variable |
b_first |
estimated slope from first step alasso |
gamma |
Parameter controlling the inverse of first step estimate. By default = 1. |
intercept |
A boolean: include an intercept term or not |
scalex |
A boolean: standardize the design matrix or not |
train_method |
"timeslice", "cv", "aic", "bic", "aicc", "hqc" |
lambda_seq |
Candidate sequnece of parameters. If NULL, the function generates the sequnce. |
nlambda |
# of lambdas |
lambda_min_ratio |
# lambda_min_ratio * lambda_max = lambda_min |
k |
k-fold cv if "cv" is chosen |
initial_window |
control "timeslice" |
horizon |
control "timeslice" |
fixed_window |
control "timeslice" |
skip |
control "timeslice" |
bestTune
train_talasso(x,y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.