train_lasso: Do parameter tuning for Lasso and Adaptive lasso

View source: R/train.R

train_lassoR Documentation

Do parameter tuning for Lasso and Adaptive lasso

Description

Do parameter tuning for Lasso and Adaptive lasso

Usage

train_lasso(
  x,
  y,
  ada = TRUE,
  gamma = 1,
  intercept = TRUE,
  scalex = FALSE,
  lambda_seq = NULL,
  train_method = "timeslice",
  nlambda = 100,
  lambda_min_ratio = 1e-04,
  k = 10,
  initial_window = ceiling(nrow(x) * 0.7),
  horizon = 1,
  fixed_window = TRUE,
  skip = 0
)

Arguments

x

Predictor matrix (n-by-p matrix)

y

Response variable

ada

A boolean: Do parameter tuning for adaptive Lasso if TRUE (Default) For Lasso if FALSE.

gamma

Parameter controlling the inverse of first step estimate. By default = 1.

intercept

A boolean: include an intercept term or not

scalex

A boolean: standardize the design matrix or not

lambda_seq

Candidate sequnece of parameters. If NULL, the function generates the sequnce.

train_method

"timeslice", "cv", "cv_random", "aic", "bic", "aicc", "hqc" "timeslice": https://topepo.github.io/caret/data-splitting.html#time By combining initial window, horizon, fixed window and skip, we can control the sample splitting. Roll_block: Setting initial_window = horizon = floor(nrow(x) / k), fixed_window = False, and skip = floor(nrow(x) / k) - 1 Period-by-period rolling: skip = 0. "cv": Cross-validation based on block splits. "cv_random": Cross-validition based on random splits. "aic", "bic", "aicc", "hqc": based on information criterion.

nlambda

# of lambdas

lambda_min_ratio

# lambda_min_ratio * lambda_max = lambda_min

k

k-fold cv if "cv" is chosen

initial_window

control "timeslice"

horizon

control "timeslice"

fixed_window

control "timeslice"

skip

control "timeslice"

Value

bestTune

Examples

train_lasso(x,y)

zhan-gao/LasForecast documentation built on Sept. 18, 2024, 9:40 p.m.