#' Confidence interval based on AFT model
#'
#' Construct conformal predictive interval based on the accelareted failure-time (AFT) model
#'
#' @param x a vector of the covariate of the test data.
#' @param c the censoring time cutoff.
#' @param alpha a number betweeo 0 and 1, specifying the miscaverage rate.
#' @param data_fit a data frame, containing the training data.
#' @param data_calib a data frame, containing the calibration data.
#' @param dist The distribution of T used in the aft model (default: weibull).
#' @param weight_calib The weight corresponding to the calibration data.
#' @param weight_new The weight corresponding to the test data.
#'
#' @return low_ci a value of the lower bound for the survival time of the test point.
#' @return includeR 0 or 1, indicating if [r,inf) is included in the confidence interval.
#'
#' @family model
#'
#' @export
aft_based <- function(x,c,alpha,
data_fit,
data_calib,
dist = "weibull",
weight_calib,
weight_new
){
## Check the dimensionality of the input
if(is.null(dim(x)[1])){
len_x <- length(x)
p <- 1
}else{
len_x <- dim(x)[1]
p <- dim(x)[2]
}
## Keep only the data points with C>=c
## Transform min(T,C) to min(T,c)
weight_calib <- weight_calib[data_calib$C>=c]
data_calib <- data_calib[data_calib$C>=c,]
data_calib$censored_T <- pmin(data_calib$censored_T,c)
## Fit the survival model
xnames <- paste0("X",1:p)
fmla <- as.formula(paste("Surv(censored_T, event) ~ ", paste(xnames, collapse= "+")))
mdl <- survreg(fmla,data=data_fit,dist=dist)
## The fitted quantile for the calibration data
res <- predict(mdl,
newdata = data_calib,
type="quantile",
p=alpha)
quant <- res
score <- pmin(c,quant)-data_calib$censored_T
## The fitted quantile for the new data
newdata <- data.frame(x)
colnames(newdata) <- xnames
res <- predict(mdl,
newdata = newdata,
type="quantile",
p=alpha)
new_quant <- res
## Compute the calibration term
calib_term <- sapply(X=weight_new,get_calibration,score=score,
weight_calib=weight_calib,alpha=alpha)
## obtain final confidence interval
lower_bnd <- pmin(new_quant,c)-calib_term
lower_bnd <- pmax(lower_bnd,0)
lower_bnd <- pmin(lower_bnd,c)
return(lower_bnd)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.