#' Confidence interval based on random forest
#'
#' Construct a conformal predictive confidence interval based on random forest
#'
#' @param x a vector of the covariate of the test data.
#' @param r the censoring time of the test data.
#' @param alpha a number betweeo 0 and 1, specifying the miscaverage rate.
#' @param data_fit a data frame, containing the training data.
#' @param data_calib a data frame, containing the calibration data.
#' @param type either "marginal" or "local". Determines the type of confidence interval.
#' @param dist The distribution of T used in the cox model.
#'
#' @return low_ci a value of the lower bound for the survival time of the test point.
#' @return includeR 0 or 1, indicating if [r,inf) is included in the confidence interval.
#'
#' @family model
#'
#' @export
rf_based <- function(x,c,alpha,
data_fit,
data_calib,
weight_calib,
weight_new){
## Keep only the data points with C>=c and transform min(T,C) to min(T,c)
weight_calib <- weight_calib[data_calib$C>=c]
data_calib <- data_calib[data_calib$C>=c,]
data_calib$censored_T <- pmin(data_calib$censored_T,c)
## Parameters
n_calib <- dim(data_calib)[1]
if(is.null(dim(x)[1])){
len_x <- length(x)
p <- 1
xnames <- paste0("X",1:p)
data_test <- c(data_calib$X1,x)
}else{
len_x <- dim(x)[1]
p <- dim(x)[2]
xnames <- paste0("X",1:p)
data_test <- rbind(data_calib[,colnames(data_calib)%in%xnames],x)
}
## Fit the model
ntree <- 1000
nodesize <- 80
data_test <- data.frame(data_test)
names(data_test) <- xnames
fmla <- as.formula(paste("censored_T ~ ",paste(xnames,collapse="+")))
mdl <- crf.km(fmla, ntree = ntree,
nodesize = nodesize,
data_train = data_fit[,names(data_fit)%in%
c(xnames,"censored_T","event")],
data_test = data_test,
yname = 'censored_T',
iname = 'event',
tau = alpha,
method = "grf")
quant <- mdl$predicted[1:n_calib]
new_quant <- tail(mdl$predicted,-n_calib)
score <- pmin(c,quant)-data_calib$censored_T
## Compute the calibration term
calib_term <- sapply(X=weight_new,get_calibration,score=score,
weight_calib=weight_calib,alpha=alpha)
## obtain final confidence interval
lower_bnd <- pmin(new_quant,c)-calib_term
lower_bnd <- pmax(lower_bnd,0)
lower_bnd <- pmin(lower_bnd,c)
return(lower_bnd)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.