predict.glmreg <- function(object,newx,newoffset, which=1:length(object$lambda), type=c("link","response","class","coefficients","nonzero"), na.action=na.pass, ...){
type=match.arg(type)
if(missing(newx)){
if(!match(type,c("coefficients","nonzero"),FALSE))stop("You need to supply a value for 'newx'")
}
else{
if(!is.null(object$terms)){
mf <- model.frame(delete.response(object$terms), newx, na.action = na.action, xlev = object$xlevels)
newx <- model.matrix(delete.response(object$terms), mf, contrasts = object$contrasts)
newx <- newx[, -1, drop = FALSE] ### remove the intercept
}
}
b0=as.matrix(object$b0)
rownames(b0)="(Intercept)"
nbeta=rbind2(b0,as.matrix(object$beta))[,which]
vnames=dimnames(nbeta)[[1]]
lambda=object$lambda[which]
nlambda <- length(lambda)
if(type=="coefficients")return(nbeta)
if(type=="nonzero"){
#if(nlambda>1) return(nonzeroCoef(nbeta[-1,,drop=FALSE],bystep=TRUE))
if(nlambda>1) return(eval(parse(text="glmnet:::nonzeroCoef(nbeta[-1,,drop=FALSE],bystep=TRUE)")))
else return(which(abs(nbeta[-1]) > 0))
}
famtype <- switch(object$family,
"gaussian"=1,
"binomial"=2,
"poisson"=3,
"negbin"=4)
n <- dim(newx)[1]
m <- dim(newx)[2]
if(is.list(newx))
newx <- matrix(unlist(newx), ncol=m)
#newx <- as.matrix(as.data.frame(lapply(newx, as.numeric)))
if(dim(object$beta)[1] != m) stop("number of columns in newx should be the same as number of rows in beta\n")
if(object$is.offset)
if(is.null(newoffset))
stop("offset is used in the estimation but not provided in prediction\n")
else offset <- newoffset
else offset <- rep(0, n)
res <- .Fortran("pred",
n=as.integer(n),
m=as.integer(m),
nlambda=as.integer(nlambda),
x=as.double(newx),
b=as.double(object$beta[,which]),
a0=as.double(object$b0[which]),
offset=as.double(offset),
family=as.integer(famtype),
eta = as.double(matrix(0,n,nlambda)),
mu = as.double(matrix(0,n,nlambda)),
PACKAGE="mpath")
eta <- matrix(res$eta, ncol=nlambda)
mu <- matrix(res$mu, ncol=nlambda)
# to be considered below: 02/28/2020
# if(object$is.offset){
# if(is.null(newoffset)) stop("newoffset is required\n")
# else
# {
# eta <- eta + newoffset
# mu <- eta
# }
# }
colnames(eta) <- colnames(mu) <- colnames(object$beta[,which])
#pihat <- exp(eta)/(1+exp(eta))
if (object$family=="gaussian" | type=="link") return(eta)
if (type=="response") return(mu)
if (object$family=="binomial" & type=="class") return(eta>0)
}
coef.glmreg <- function(object,which=1:length(object$lambda),...)
{
b0=matrix(object$b0, nrow=1)
rownames(b0)="(Intercept)"
nbeta=rbind2(b0,as.matrix(object$beta))
return(nbeta[,which])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.