Description Usage Arguments Details Value Note Author(s) References Examples
Density, distribution function, quantile function and random generation for the ZMPL distribution.
1 2 3 4 |
x, q |
vector of observations/quantiles |
theta |
vector of scale parameter values |
p0 |
vector of shape parameter values |
log, |
log.p logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
If theta
or p0
not specified they assume the default values of 5 and 0, respectively.
The ZMPL distribution has density:
Pr(X=k)=≤ft\{\begin{array}{ll} π + (1 - π)\frac{θ^2(θ + 2)}{(θ + 1)^3},&k = 0, \\&\\(1 - π)\frac{θ^2(k + θ + 2)}{(θ + 1)^{k+3}},&k \in \mathbb{N}^{ {\tiny +}}. \end{array}\right.
returns a object of the ZMPL distribution.
For the function ZMPL(), p0 is the zero-modification parameter and different values lead to different modifications of the ZMPL distribution.
Manoel Santos-Neto mn.neco@gmail.com, Danillo Xavier danilloxavier@gmail.com, Marcelo Bourguignon m.p.bourguignon@gmail.com and Vera Tomazella vera@ufscar.com
Santos-Neto, M., Xavier, D., Bourguignon, M. and Tomazella, V. (2017) Zero-Modified Poisson-Lindley distribution with applications in inflated and deflated of zeros. to appear.
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.