descriptive.zmpl: Zero Modified Poisson-Lindley (ZMPL) distribution

Description Usage Arguments Details Value Note Author(s) References Examples

Description

The fuction ZMPL() defines the ZMPL distribution, a two paramenter distribution. The zero modified Poisson-Lindley distribution is similar to the Poisson-Lindley distribution but allows zeros as y values. The extra parameter models the probabilities at zero. The functions dZMPL, pZMPL, qZMPL and rZMPL define the density, distribution function, quantile function and random generation for the zero modified Poisson-Lindley distribution. plotZMPL can be used to plot the distribution. meanZMPL calculates the expected value of the response for a fitted model.

Usage

1
2
3
4
5
6
dZMPL(x, mu = 1, sigma = 1, nu=0.1, log = FALSE)
pZMPL(q, mu = 1, sigma = 1,  nu=0.1, lower.tail = TRUE, log.p = FALSE)
qZMPL(p, mu = 1, sigma = 1,  nu=0.1, lower.tail = TRUE, log.p = FALSE)
rZMPL(n, mu = 1, sigma = 1)
plotZMPL(mu = .5, sigma = 1,  nu=0.1, from = 0, to = 0.999, n = 101, ...)
meanZMPL(obj)

Arguments

x, q

vector of observations/quantiles

mu

vector of scale parameter values

sigma

vector of shape parameter values

log,

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

from

where to start plotting the distribution from

to

up to where to plot the distribution

...

other graphical parameters for plotting

Details

The probability massa function of the is given by

f_{Y}(y;μ,δ,p) =\frac{[1-p]√{δ+1}}{4\,y^{3/2}\,√{πμ}}≤ft[y+\frac{δμ}{δ+1} \right]\exp≤ft(-\frac{δ}{4}≤ft[\frac{y[δ+1]}{δμ}+\frac{δμ}{y[δ+1]}-2\right]\right) I_{(0, ∞)}(y)+ pI_{\{0\}}(y).

Value

returns a object of the ZMPL distribution.

Note

For the function ZMPL(), mu is the mean and sigma is the precision parameter and nu is the proportion of zeros of the zero adjusted Birnbaum-Saunders distribution.

Author(s)

Manoel Santos-Neto manoel.ferreira@ufcg.edu.br, F.J.A. Cysneiros cysneiros@de.ufpe.br, Victor Leiva victorleivasanchez@gmail.com and Michelli Barros michelli.karinne@gmail.com

References

Leiva, V., Santos-Neto, M., Cysneiros, F.J.A., Barros, M. (2015) A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution. Applied Stochastic Models in Business and Industry. 10.1002/asmb.2124.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
plotZARBS()
dat <- rZARBS(1000); hist(dat)
fit <- gamlss(dat~1,family=ZARBS(),method=CG())
meanZABS(fit)

data(papatoes);
fit = gamlss(I(Demand/10000)~1,sigma.formula=~1, nu.formula=~1, family=ZARBS(mu.link="identity",sigma.link = "identity",nu.link = "identity"),method=CG(),data=papatoes)
summary(fit)

data(oil)
fit1 = gamlss(Demand~1,sigma.formula=~1, nu.formula=~1, family=ZARBS(mu.link="identity",sigma.link = "identity",nu.link = "identity"),method=CG(),data=oil)
summary(fit1)

zmpldistribution/zmpl documentation built on May 11, 2019, 5:16 p.m.