Description Usage Arguments Details Value Note Author(s) References Examples
The fuction ZMPL()
defines the ZMPL distribution, a two paramenter
distribution. The zero modified Poisson-Lindley distribution is similar
to the Poisson-Lindley distribution but allows zeros as y values. The extra parameter
models the probabilities at zero. The functions dZMPL, pZMPL, qZMPL and rZMPL define
the density, distribution function, quantile function and random generation for
the zero modified Poisson-Lindley distribution.
plotZMPL can be used to plot the distribution. meanZMPL calculates the expected
value of the response for a fitted model.
1 2 3 4 5 6 | dZMPL(x, mu = 1, sigma = 1, nu=0.1, log = FALSE)
pZMPL(q, mu = 1, sigma = 1, nu=0.1, lower.tail = TRUE, log.p = FALSE)
qZMPL(p, mu = 1, sigma = 1, nu=0.1, lower.tail = TRUE, log.p = FALSE)
rZMPL(n, mu = 1, sigma = 1)
plotZMPL(mu = .5, sigma = 1, nu=0.1, from = 0, to = 0.999, n = 101, ...)
meanZMPL(obj)
|
x, q |
vector of observations/quantiles |
mu |
vector of scale parameter values |
sigma |
vector of shape parameter values |
log, |
log.p logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
... |
other graphical parameters for plotting |
The probability massa function of the is given by
f_{Y}(y;μ,δ,p) =\frac{[1-p]√{δ+1}}{4\,y^{3/2}\,√{πμ}}≤ft[y+\frac{δμ}{δ+1} \right]\exp≤ft(-\frac{δ}{4}≤ft[\frac{y[δ+1]}{δμ}+\frac{δμ}{y[δ+1]}-2\right]\right) I_{(0, ∞)}(y)+ pI_{\{0\}}(y).
returns a object of the ZMPL distribution.
For the function ZMPL(), mu is the mean and sigma is the precision parameter and nu is the proportion of zeros of the zero adjusted Birnbaum-Saunders distribution.
Manoel Santos-Neto manoel.ferreira@ufcg.edu.br, F.J.A. Cysneiros cysneiros@de.ufpe.br, Victor Leiva victorleivasanchez@gmail.com and Michelli Barros michelli.karinne@gmail.com
Leiva, V., Santos-Neto, M., Cysneiros, F.J.A., Barros, M. (2015) A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution. Applied Stochastic Models in Business and Industry. 10.1002/asmb.2124.
1 2 3 4 5 6 7 8 9 10 11 12 | plotZARBS()
dat <- rZARBS(1000); hist(dat)
fit <- gamlss(dat~1,family=ZARBS(),method=CG())
meanZABS(fit)
data(papatoes);
fit = gamlss(I(Demand/10000)~1,sigma.formula=~1, nu.formula=~1, family=ZARBS(mu.link="identity",sigma.link = "identity",nu.link = "identity"),method=CG(),data=papatoes)
summary(fit)
data(oil)
fit1 = gamlss(Demand~1,sigma.formula=~1, nu.formula=~1, family=ZARBS(mu.link="identity",sigma.link = "identity",nu.link = "identity"),method=CG(),data=oil)
summary(fit1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.