Description Usage Arguments Examples
Fit Binary Regression Model
1 2  | Fit.BinReg(y, X = NULL, model = "logistic", offset = 0, df = NULL,
  sig = 0.05, eps = 1e-08, maxit = 10, report = T)
 | 
y | 
 Binary 0/1 outcome vector.  | 
X | 
 Numeric model matrix. Include an intercept.  | 
model | 
 Selected from among logistic, probit, and robit.  | 
offset | 
 Fixed component added to the linear predictor.  | 
df | 
 Degrees of freedom, if using the robit model.  | 
sig | 
 Significance level, for CIs.  | 
eps | 
 Tolerance for Newton-Raphson iterations.  | 
maxit | 
 Maximum number of NR iterations.  | 
report | 
 Report fitting progress?  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | ## Not run: 
set.seed(100);
# Design matrix
X = cbind(1,matrix(rnorm(3e3),nrow=1e3));
# Coefficient
b = c(1,-1,1,0);
# Logistic observations
y = rBinReg(X,b,model="logistic");
# Estimate logistic model
M = Fit.BinReg(y,X,model="logistic");
# Probit observations
y = rBinReg(X,b,model="probit");
# Estimate probit model
M = Fit.BinReg(y,X,model="probit");
# Robit observations
y = rBinReg(X,b,model="robit",df=5);
# Estimate robit model
M = Fit.BinReg(y,X,model="robit",df=5);
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.