#' Taxonomic Abundance
#' @description Calculate the abundance of each sample represented by the
#' specified taxon or taxa.
#' @param .dataframe A data frame where each row should represent the number of
#' individuals enumerated for a single taxon collected during a single sampling event.
#' @param .key_col One unquoted column name that represents a key (i.e., unique ID)
#' for a sampling event for which to group (i.e., aggregate) the data.
#' @param .counts_col One unquoted column name that represents taxonomic counts.
#' @param .filter A logical statement to subset the data frame prior to calculating
#' the metric of interest.
#' @param .unnest_col One unqouted column name that represents nested data.
#' If this column is NULL (default), then the data will not be unnested.
#' @return A numeric vector.
#' @export
taxa_abund <- function(.dataframe, .key_col, .counts_col,
.filter = NULL,
.unnest_col = NULL) {
prep.df <- prep_taxa_df(
.dataframe = .dataframe,
.key_col = {{ .key_col }},
.unnest_col = {{ .unnest_col }},
.filter = {{ .filter }}
)
# Calculate the abundance of the specified taxon.
final.vec <- prep.df %>%
dplyr::group_by({{ .key_col }}) %>%
dplyr::summarise(abund = sum({{ .counts_col }})) %>%
original_order(.dataframe, {{ .key_col }}) %>%
dplyr::mutate(
abund = as.numeric(.data$abund),
abund = dplyr::if_else(
!is.na(.data$abund),
as.numeric(.data$abund),
as.numeric(0)
)
) %>%
dplyr::pull(.data$abund)
#----------------------------------------------------------------------------
return(final.vec)
}
# ==============================================================================
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.