#' @importFrom httr modify_url POST content
#' @importFrom tibble tibble
#'
#' @noRd
translate_wh <- function(text, target_lang = "EN", source_lang = NULL, split_sentences = TRUE,
preserve_formatting = FALSE, get_detect = FALSE, auth_key = "your_key") {
# Text prep
text <- text_check(text)
if (split_sentences) {
split_sentences <- "1"
} else {
split_sentences <- "0"
}
if (preserve_formatting) {
preserve_formatting <- "1"
} else {
preserve_formatting <- "0"
}
# DeepL API call
response <- httr::POST(
url = "https://api.deepl.com/v2/translate",
body = list(
text = text,
source_lang = source_lang,
target_lang = target_lang,
split_sentences = split_sentences,
preserve_formatting = preserve_formatting
),
httr::add_headers("Authorization" = paste("DeepL-Auth-Key", auth_key))
)
# Check for HTTP error
response_check(response)
# Extract content
translations <- httr::content(response)[["translations"]]
if (get_detect) {
translation <- tibble::tibble(
translation = purrr::map_chr(translations, "text"),
source_lang = purrr::map_chr(translations, "detected_source_language")
)
} else {
translation <- purrr::map_chr(translations, "text")
}
# Return
return(translation)
}
#' @importFrom httr modify_url POST content
#' @importFrom tibble tibble
#'
#' @noRd
translate2_wh <- function(text, target_lang = "EN", source_lang = NULL, split_sentences = TRUE,
preserve_formatting = FALSE, get_detect = FALSE, auth_key = "your_key") {
# Text prep
text <- text_check(text)
if (split_sentences) {
split_sentences <- "1"
} else {
split_sentences <- "0"
}
if (preserve_formatting) {
preserve_formatting <- "1"
} else {
preserve_formatting <- "0"
}
# DeepL API call
response <- httr::POST(
url = "https://api-free.deepl.com/v2/translate",
body = list(
text = text,
source_lang = source_lang,
target_lang = target_lang,
split_sentences = split_sentences,
preserve_formatting = preserve_formatting
),
httr::add_headers("Authorization" = paste("DeepL-Auth-Key", auth_key))
)
# Check for HTTP error
response_check(response)
# Extract content
translations <- httr::content(response)[["translations"]]
if (get_detect) {
translation <- tibble::tibble(
translation = purrr::map_chr(translations, "text"),
source_lang = purrr::map_chr(translations, "detected_source_language")
)
} else {
translation <- purrr::map_chr(translations, "text")
}
# Return
return(translation)
}
#' @importFrom utf8 utf8_valid as_utf8
#'
#' @noRd
text_check <- function(text) {
# Check for text
if (is.null(text)) stop("Text input is missing.")
# Coerce non-character vectors to a character vector
if (!is.character(text)) message("Text input had to be coerced to a character vector.")
text <- as.character(text)
# Check if text can be translated to valid UTF-8 string
if (!utf8::utf8_valid(text)) stop("Text input cannot be translated to a valid UTF-8 string.")
text <- utf8::as_utf8(text)
return(text)
}
#' @importFrom httr status_code
#'
#' @noRd
response_check <- function(response) {
status <- httr::status_code(response)
if (status == 400) stop("Bad request. Please check error message and your parameters.")
if (status == 403) stop("Authorization failed. Please supply a valid auth_key parameter.")
if (status == 404) stop("The requested resource could not be found.")
if (status == 413) stop("The request size exceeds the limit.")
if (status == 414) stop("The request URL is too long. You can avoid this error by using a POST request instead of a GET request.")
if (status == 429) stop("Too many requests. Please wait and resend your request.")
if (status == 456) stop("Quota exceeded. The character limit has been reached.")
if (status == 503) stop("Resource currently unavailable. Try again later.")
}
#' @importFrom tokenizers tokenize_sentences
#' @importFrom tibble tibble
#' @importFrom purrr map_chr
#'
#' @noRd
split_text_wh <- function(id, text, max_size_bytes, tokenize) {
if (tokenize == "sentences") sentences <- tokenizers::tokenize_sentences(text)
if (tokenize == "words") sentences <- tokenizers::tokenize_words(text)
cnt <- tibble::tibble(
sentence = unlist(sentences),
bytes = nchar(sentence, type = "bytes"),
bytes_sum = cumsum(bytes),
batch = ceiling(bytes_sum / max_size_bytes)
)
batches <- split(cnt, cnt$batch)
batches <- tibble::tibble(
text_id = id,
segment_id = 1:length(batches),
segment_text = purrr::map_chr(batches, function(x) paste0(x[["sentence"]], collapse = " "))
)
return(batches)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.