R/Classifier.R

Classifier <- setRefClass("Classifier", fields=list(
					     x = "data.frame",
					     y = "factor",
					     x.test = "data.frame",
					     y.test = "factor",
					     predicted.class = "factor",
					     predicted.value = "numeric",
					     optimalCutoff = "numeric",
					     sens = "numeric",#based on youden index
					     spec = "numeric",#based on youden index
					     rr = "numeric",
					     or = "numeric",
					     rr.l = "numeric",
					     rr.u = "numeric",
					     or.l = "numeric",
					     or.u = "numeric",
					     auc = "numeric",
					     auc.l = "numeric",
					     auc.u = "numeric",
					     contingency = "table",
					     model = "ANY",
					     name = "character",
					     roc = "list" # list of class "roc" from pROC package
					     ),
  
  methods = list(
		 initialize = function(...) {
			 createClassifier(.self,...)
		 },
  ### AUC, CI(AUC), p-value of difference between AUC
  ### sensitivity, specificity, relative risk, odds ratio (ci of all)
  ###
		 setName = function(name) {
			 .self$name <- name
		 },

		 buildClassifier = function() {
			 ### this is the method which all the inherited classes
			 ### should implement
			 callNextMethod()
		 },

		 predict = function() {
			 callNextMethod()
		 },

		 getROC = function() {
			 .self$roc[[1]]
		 },

		 computeROC = function() {
			 .self$roc[[1]] <- roc(y, predicted.value)
		 },
     
     plotROC = function(...) {
       plot(getROC(), print.auc=T, print.thres=optimalCutoff, ...)
     },

		 computeAUC = function() {
			 CI <- ci(.self$getROC())
			 .self$auc.l <- CI[[1]]
			 .self$auc <- CI[[2]]
			 .self$auc.u <- CI[[3]]
		 },

		 computeoptimalCutoff = function() {
			 .self$optimalCutoff <- .self$getROC()$thresholds[which.max((.self$getROC()$sensitivities * .self$getROC()$specificities)/(.self$getROC()$sensitivities + .self$getROC()$specificities))]
		 },

		 computeSensitivity = function() {
			 ## Sensitivity at the Youden's Index
			 .self$sens <-  .self$getROC()$sensitivities[which.max((.self$getROC()$sensitivities * .self$getROC()$specificities)/(.self$getROC()$sensitivities + .self$getROC()$specificities))]
		 },

		 computeSpecificity = function() {
			 ## Specificity at the Youden's Index
			 .self$spec <- .self$getROC()$specificities[which.max((.self$getROC()$sensitivities * .self$getROC()$specificities)/(.self$getROC()$sensitivities + .self$getROC()$specificities))]
		 },

     printStatistics = function() {
       print(data.frame("AUC CIL"=auc.l, "AUC"=auc, "AUC CIU"=auc.u,
                        "Optimal cutoff"=optimalCutoff,
                        "Sensitivity"=sens, "Specificity"=spec))
     }
  ))


setGeneric("createClassifier", def=function(object, x, y, x.test, y.test, selectedVariables)
  standardGeneric("createClassifier"))

setMethod("createClassifier", signature=c("Classifier", "missing", "missing", "missing", "missing", "missing"),
          function(object) {
            object
          })

setMethod("createClassifier", signature=c("Classifier", "Dataset", "character", "missing", "missing", "character"),          
          function(object, x, y, selectedVariables) {
            object$x <- data.frame(exprs(x)[selectedVariables,], check.names=F)
            object$y <- factor(getSampleMetaData(x,y))
            names(object$y) <- sampleNames(x)
            object
          })

setMethod("createClassifier", signature=c("Classifier", "Dataset", "character", "Dataset", "character", "character"),          
          function(object, x, y, x.test, y.test, selectedVariables) {
            object$x <- data.frame(exprs(x)[selectedVariables,], check.names=F)
            object$y <- factor(getSampleMetaData(x,y))
            names(object$y) <- sampleNames(x)
            object$x.test <- data.frame(exprs(x.test)[selectedVariables,], check.names=F)
            object$y.test <- factor(getSampleMetaData(x.test,y.test))
            names(object$y.test) <- sampleNames(x.test)
            object
          })
zzxxyui/metadarclean documentation built on Nov. 5, 2019, 2:56 p.m.