Description Usage Arguments Details Value Author(s) References See Also Examples
Principal Component Analysis (PCA) via ExPosition.
1 2 |
DATA |
original data to perform a PCA on. |
scale |
a boolean, vector, or string. See |
center |
a boolean, vector, or string. See |
DESIGN |
a design matrix to indicate if rows belong to groups. |
make_design_nominal |
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix. |
graphs |
a boolean. If TRUE (default), graphs and plots are provided (via |
k |
number of components to return. |
epPCA
performs principal components analysis on a data matrix.
See corePCA
for details on what is returned.
Derek Beaton
Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.
Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.