estimateBaseline-methods | R Documentation |
This method estimates the baseline of mass spectrometry data
(represented by a MassSpectrum
object).
## S4 method for signature 'MassSpectrum'
estimateBaseline(object,
method=c("SNIP", "TopHat", "ConvexHull", "median"),
...)
object |
|
method |
used baseline estimation method, one of
|
... |
arguments to be passed to |
"SNIP"
:This baseline estimation is based on the Statistics-sensitive Non-linear
Iterative Peak-clipping algorithm (SNIP) described in Ryan et al 1988.
The algorithm based on the following equation:
y_i(k) = \min \{ y_i, \frac{(y_{i-k}+y_{i+k})}{2} \}
It has two additional arguments namely iterations
and
decreasing
. iterations
controls the window size (k;
similar to halfWindowSize
in "TopHat"
, "Median"
) of
the algorithm. The resulting window reaches from
mass[cur_index-iterations]
to mass[cur_index+iterations]
.
decreasing
: In Morhac 2009 a decreasing clipping window is
suggested to get a smoother baseline. For decreasing = TRUE
(decreasing = FALSE
) k=iterations
is decreased
(increased) by one until zero (iterations
) is reached. The default
setting is decreasing = TRUE
.
"TopHat"
:This algorithm applies a moving minimum (erosion filter) and subsequently
a moving maximum (dilation filter) filter on the intensity values. The
implementation is based on van Herk 1996.
It has an additional halfWindowSize
argument determining the half
size of the moving window for the TopHat filter. The resulting window
reaches from mass[cur_index-halfWindowSize]
to
mass[cur_index+halfWindowSize]
.
"ConvexHull"
:The baseline estimation is based on a convex hull constructed below the spectrum.
"median"
:This baseline estimation uses a moving median. It is based on
runmed
. The additional argument halfWindowSize
corresponds to the k
argument in runmed
(k = 2 * halfWindowSize + 1
) and controls the half size of the
moving window. The resulting window reaches from
mass[cur_index-halfWindowSize]
to
mass[cur_index+halfWindowSize]
.
Returns a two column matrix (first column: mass, second column: intensity) of the estimated baseline.
Sebastian Gibb mail@sebastiangibb.de
"SNIP"
:
C.G. Ryan, E. Clayton, W.L. Griffin, S.H. Sie, and D.R. Cousens. 1988.
Snip, a statistics-sensitive background treatment for the quantitative analysis
of pixe spectra in geoscience applications.
Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 34(3): 396-402.
M. Morhac. 2009. An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(2), 478-487.
"TopHat"
:
M. van Herk. 1992.
A Fast Algorithm for Local Minimum and Maximum Filters on Rectangular and
Octagonal Kernels.
Pattern Recognition Letters 13.7: 517-521.
J. Y. Gil and M. Werman. 1996. Computing 2-Dimensional Min, Median and Max Filters. IEEE Transactions: 504-507.
"ConvexHull"
:
Andrew, A. M. 1979.
Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9(5), 216-219.
MassSpectrum
,
removeBaseline,MassSpectrum-method
demo("baseline")
Website: https://strimmerlab.github.io/software/maldiquant/
## load package
library("MALDIquant")
## load example data
data("fiedler2009subset", package="MALDIquant")
## choose only the first mass spectrum
s <- fiedler2009subset[[1]]
## SNIP
plot(s)
## estimate baseline
b <- estimateBaseline(s, method="SNIP", iterations=100)
## draw baseline on the plot
lines(b, col="red")
## TopHat
plot(s)
## estimate baseline (try different parameters)
b1 <- estimateBaseline(s, method="TopHat", halfWindowSize=75)
b2 <- estimateBaseline(s, method="TopHat", halfWindowSize=150)
## draw baselines on the plot
lines(b1, col=2)
lines(b2, col=3)
## draw legend
legend(x="topright", lwd=1, legend=paste0("halfWindowSize=", c(75, 150)),
col=c(2, 3))
## ConvexHull
plot(s)
## estimate baseline
b <- estimateBaseline(s, method="ConvexHull")
## draw baseline on the plot
lines(b, col="red")
## Median
plot(s)
## estimate baseline
b <- estimateBaseline(s, method="median")
## draw baseline on the plot
lines(b, col="red")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.