qr-methods | R Documentation |
Computes the pivoted QR factorization of an m \times n
real matrix A
, which has the general form
P_{1} A P_{2} = Q R
or (equivalently)
A = P_{1}' Q R P_{2}'
where
P_{1}
and P_{2}
are permutation matrices,
Q = \prod_{j = 1}^{n} H_{j}
is an m \times m
orthogonal matrix
equal to the product of n
Householder matrices H_{j}
, and
R
is an m \times n
upper trapezoidal matrix.
denseMatrix
use the default method implemented
in base, namely qr.default
. It is built on
LINPACK routine dqrdc
and LAPACK routine dgeqp3
, which
do not pivot rows, so that P_{1}
is an identity matrix.
Methods for sparseMatrix
are built on
CXSparse routines cs_sqr
and cs_qr
, which require
m \ge n
.
qr(x, ...)
## S4 method for signature 'dgCMatrix'
qr(x, order = 3L, ...)
x |
a finite matrix or
|
order |
an integer in |
... |
further arguments passed to or from methods. |
If x
is sparse and structurally rank deficient, having
structural rank r < n
, then x
is augmented with
(n-r)
rows of (partly non-structural) zeros, such that
the augmented matrix has structural rank n
.
This augmented matrix is factorized as described above:
P_1 A P_2 = P_1 \begin{bmatrix} A_{0} \\ 0 \end{bmatrix} P_2 = Q R
where A_0
denotes the original, user-supplied
(m-(n-r)) \times n
matrix.
An object representing the factorization, inheriting from
virtual S4 class QR
or S3 class
qr
. The specific class is qr
unless x
inherits from virtual class
sparseMatrix
, in which case it is
sparseQR
.
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1137/1.9780898718881")}
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.56021/9781421407944")}
Class sparseQR
and its methods.
Class dgCMatrix
.
Generic function qr
from base,
whose default method qr.default
“defines”
the S3 class qr
of dense QR factorizations.
Generic functions expand1
and expand2
,
for constructing matrix factors from the result.
Generic functions Cholesky
, BunchKaufman
,
Schur
, and lu
,
for computing other factorizations.
showMethods("qr", inherited = FALSE)
## Rank deficient: columns 3 {b2} and 6 {c3} are "extra"
M <- as(cbind(a1 = 1,
b1 = rep(c(1, 0), each = 3L),
b2 = rep(c(0, 1), each = 3L),
c1 = rep(c(1, 0, 0), 2L),
c2 = rep(c(0, 1, 0), 2L),
c3 = rep(c(0, 0, 1), 2L)),
"CsparseMatrix")
rownames(M) <- paste0("r", seq_len(nrow(M)))
b <- 1:6
eps <- .Machine$double.eps
## .... [1] full rank ..................................................
## ===> a least squares solution of A x = b exists
## and is unique _in exact arithmetic_
(A1 <- M[, -c(3L, 6L)])
(qr.A1 <- qr(A1))
stopifnot(exprs = {
rankMatrix(A1) == ncol(A1)
{ d1 <- abs(diag(qr.A1@R)); sum(d1 < max(d1) * eps) == 0L }
rcond(crossprod(A1)) >= eps
all.equal(qr.coef(qr.A1, b), drop(solve(crossprod(A1), crossprod(A1, b))))
all.equal(qr.fitted(qr.A1, b) + qr.resid(qr.A1, b), b)
})
## .... [2] numerically rank deficient with full structural rank .......
## ===> a least squares solution of A x = b does not
## exist or is not unique _in exact arithmetic_
(A2 <- M)
(qr.A2 <- qr(A2))
stopifnot(exprs = {
rankMatrix(A2) == ncol(A2) - 2L
{ d2 <- abs(diag(qr.A2@R)); sum(d2 < max(d2) * eps) == 2L }
rcond(crossprod(A2)) < eps
## 'qr.coef' computes unique least squares solution of "nearby" problem
## Z x = b for some full rank Z ~ A, currently without warning {FIXME} !
tryCatch({ qr.coef(qr.A2, b); TRUE }, condition = function(x) FALSE)
all.equal(qr.fitted(qr.A2, b) + qr.resid(qr.A2, b), b)
})
## .... [3] numerically and structurally rank deficient ................
## ===> factorization of _augmented_ matrix with
## full structural rank proceeds as in [2]
## NB: implementation details are subject to change; see (*) below
A3 <- M
A3[, c(3L, 6L)] <- 0
A3
(qr.A3 <- qr(A3)) # with a warning ... "additional 2 row(s) of zeros"
stopifnot(exprs = {
## sparseQR object preserves the unaugmented dimensions (*)
dim(qr.A3 ) == dim(A3)
dim(qr.A3@V) == dim(A3) + c(2L, 0L)
dim(qr.A3@R) == dim(A3) + c(2L, 0L)
## The augmented matrix remains numerically rank deficient
rankMatrix(A3) == ncol(A3) - 2L
{ d3 <- abs(diag(qr.A3@R)); sum(d3 < max(d3) * eps) == 2L }
rcond(crossprod(A3)) < eps
})
## Auxiliary functions accept and return a vector or matrix
## with dimensions corresponding to the unaugmented matrix (*),
## in all cases with a warning
qr.coef (qr.A3, b)
qr.fitted(qr.A3, b)
qr.resid (qr.A3, b)
## .... [4] yet more examples ..........................................
## By disabling column pivoting, one gets the "vanilla" factorization
## A = Q~ R, where Q~ := P1' Q is orthogonal because P1 and Q are
(qr.A1.pp <- qr(A1, order = 0L)) # partial pivoting
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
stopifnot(exprs = {
length(qr.A1 @q) == ncol(A1)
length(qr.A1.pp@q) == 0L # indicating no column pivoting
ae2(A1[, qr.A1@q + 1L], qr.Q(qr.A1 ) %*% qr.R(qr.A1 ))
ae2(A1 , qr.Q(qr.A1.pp) %*% qr.R(qr.A1.pp))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.