Distance matrix - Sum of all pairwise distances in a distance matrix | R Documentation |
Distance matrix - Sum of all pairwise distances in a distance matrix.
Dist(x,method = "euclidean", square = FALSE,p=0,
result = "matrix" ,vector = FALSE, parallel = FALSE)
total.dist(x, method = "euclidean", square = FALSE, p = 0)
vecdist(x)
x |
A matrix with data. The distances will be calculated between pairs of rows. In the case of vecdist this is a vector. For the haversine distance it must be a matrix with two columns, the first column is the latitude and the second the longitude (in radians). |
method |
See details for the available methods. |
square |
If you choose "euclidean" or "hellinger" as the method, then you can have the option to return the squared Euclidean distances by setting this argument to TRUE. |
p |
This is for the Minkowski method, the power of the metric. |
vector |
For return a vector instead a matrix. |
result |
One of the:
|
parallel |
For methods euclidean, canberra and minkowski, you can run the algorithm in parallel. |
The distance matrix is compute with an extra argument for the Euclidean distances. The "kullback_leibler" refers to the symmetric Kullback-Leibler divergence.
euclidean : \sum \sqrt( \sum | P_i - Q_i |^2)
manhattan : \sum | P_i - Q_i |
minimum : \sum \min | P_i - Q_i |
maximum : \sum \max | P_i - Q_i |
minkowski : ( \sum | P_i - Q_i |^p)^{\frac{1}{p}}
bhattacharyya : - ln (\sum \sqrt(P_i * Q_i))
hellinger : 2 * \sqrt( 1 - \sum \sqrt(P_i * Q_i))
kullback_leibler : \sum P_i * log(\frac{P_i}{Q_i})
jensen_shannon : 0.5 * ( \sum P_i * log(2 * \frac{P_i}{Q_i + Q_i}) + \sum Q_i * log(2 * \frac{Q_i}{P_i + Q_i}))
canberra : \sum \frac{| P_i - Q_i |}{P_i + Q_i}
chi_square X
^2 : \sum (\frac{(P_i - Q_i )^2}{P_i + Q_i})
soergel : \frac{\sum | P_i - Q_i |}{\sum \max(P_i , Q_i)}
sorensen : \frac{\sum | P_i - Q_i |}{\sum (P_i + Q_i)}
cosine : \sum \frac{\sum (P_i * Q_i)}{\sqrt(\sum P_i^2) * \sqrt(\sum Q_i^2)}
wave_hedges : \sum \frac{\sum | P_i - Q_i |}{\max(P_i , Q_i)}
motyka : \sum \frac{\min(P_i, Q_i)}{(P_i + Q_i)}
harmonic_mean : 2 * \frac{\sum P_i * Q_i}{P_i + Q_i}
jeffries_matusita : \sum \sqrt( 2 - 2 * \sum \sqrt(P_i * Q_i))
gower : \sum \frac{1}{d} * \sum | P_i - Q_i |
kulczynski : \sum \frac{\sum | P_i - Q_i |}{\sum \min(P_i , Q_i)}
itakura_saito : \sum \frac{P_i}{Q_i} - log(\frac{P_i}{Q_i}) - 1
haversine : 2 * R * \arcsin(\sqrt(\sin((lat_2 - lat_1)/2)^2 + \cos(lat_1) * \cos(lat_2) * \sin((lon_2 - lon_1)/2)^2))
A square matrix with the pairwise distances.
Manos Papadakis.
R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.
Mardia K. V., Kent J. T. and Bibby J. M. (1979). Multivariate Analysis. Academic Press.
dista, colMedians
x <- matrix(rnorm(50 * 10), ncol = 10)
a1 <- Dist(x)
a2 <- as.matrix( dist(x) )
x<-a1<-a2<-NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.