copykat | R Documentation |
copycat main_func.
copykat(
rawmat = rawdata,
id.type = "S",
cell.line = "no",
ngene.chr = 5,
LOW.DR = 0.05,
UP.DR = 0.1,
win.size = 25,
norm.cell.names = "",
KS.cut = 0.1,
sam.name = "",
distance = "euclidean",
output.seg = "FALSE",
plot.genes = "TRUE",
genome = "hg20",
n.cores = 1
)
rawmat |
raw data matrix; genes in rows; cell names in columns. |
id.type |
gene id type: Symbol or Ensemble. |
cell.line |
if the data are from pure cell line,put "yes"; if cell line data are a mixture of tumor and normal cells, still put "no". |
ngene.chr |
minimal number of genes per chromosome for cell filtering. |
LOW.DR |
minimal population fractions of genes for smoothing. |
UP.DR |
minimal population fractions of genes for segmentation. |
win.size |
minimal window sizes for segmentation. |
norm.cell.names |
a vector of normal cell names. |
KS.cut |
segmentation parameters, input 0 to 1; larger looser criteria. |
sam.name |
sample name. |
distance |
distance methods include euclidean, and correlation converted distance include pearson and spearman. |
output.seg |
TRUE or FALSE, output seg file for IGV visualization |
plot.genes |
TRUE or FALSE, output heatmap of CNVs with genename labels |
genome |
hg20 or mm10, current version only work for human or mouse genes |
n.cores |
number of cores for parallel computing. |
1) aneuploid/diploid prediction results; 2) CNA results in 220KB windows; 3) heatmap; 4) hclustering object.
test.ck <- copykat(rawmat=rawdata,id.type="S", ngene.chr=5, win.size=25, KS.cut=0.1,sam.name="test", distance="euclidean", norm.cell.names="", n.cores=4, output.seg="FALSE")
test.pred <- test.ck$prediction
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.