pca | R Documentation |
Computes a principal components analysis based on the singular value decomposition.
pca(object, ...)
## S4 method for signature 'data.frame'
pca(
object,
center = TRUE,
scale = TRUE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
sup_quali = NULL,
weight_row = NULL,
weight_col = NULL
)
## S4 method for signature 'matrix'
pca(
object,
center = TRUE,
scale = TRUE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
weight_row = NULL,
weight_col = NULL
)
object |
A |
... |
Currently not used. |
center |
A |
scale |
A |
rank |
An |
sup_row |
A |
sup_col |
A |
sup_quali |
A |
weight_row |
A |
weight_col |
A |
A PCA
object.
N. Frerebeau
Lebart, L., Piron, M. and Morineau, A. Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données. Paris: Dunod, 2006.
svd()
Other multivariate analysis:
ca()
,
mca()
,
pcoa()
,
predict()
## Load data
data("iris")
## Compute principal components analysis
X <- pca(iris)
## Get eigenvalues
get_eigenvalues(X)
## Get individual cos2
head(get_cos2(X, margin = 1))
## Get variable contributions
get_contributions(X, margin = 2)
## Get correlations between variables and dimensions
get_correlations(X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.