Description Usage Arguments Details Value Author(s) References See Also Examples
Fits generalized linear models using the same model specification as glm
in the stats package, but with a modified default fitting method. The method provides greater stability for models that may fail to converge using glm
.
1 2 3 4 |
formula |
as for |
family |
as for |
data |
as for |
weights |
as for |
subset |
as for |
na.action |
as for |
start |
as for |
etastart |
as for |
mustart |
as for |
offset |
as for |
control |
as for |
model |
as for |
method |
the method used in fitting the model. The default method |
x |
as for |
y |
as for |
singular.ok |
as for |
contrasts |
as for |
... |
as for |
glm2
is a modified version of glm
in the stats package. It fits generalized linear models using the same model specification as glm
. It is identical to glm
except for minor modifications to change the default fitting method. The default method uses a stricter form of step-halving to force the deviance to decrease at each iteration and is implemented in glm.fit2
. Like glm
, user-supplied fitting functions can be used with glm2
by passing a function or a character string naming a function to the method
argument. See Marschner (2011) for a discussion of the need for a modified fitting method.
The value returned by glm2
has exactly the same documentation as the value returned by glm
, except for:
method |
the name of the fitter function used, which by default is |
glm2
uses the code from glm
, whose authors are listed in the help documentation for the stats package. Modifications to this code were made by Ian Marschner.
Marschner, I.C. (2011) glm2: Fitting generalized linear models with convergence problems. The R Journal, Vol. 3/2, pp.12-15.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | library(glm2)
data(crabs)
data(heart)
#==========================================================
# EXAMPLE 1: logistic regression null model
# (behaviour of glm and glm2 for different starting values)
#==========================================================
y <- c(1,1,1,0)
# intercept estimate = log(0.75/0.25) = 1.098612
#--- identical behaviour ---#
fit1 <- glm(y ~ 1, family=binomial(link="logit"),
control=glm.control(trace=TRUE))
fit2 <- glm2(y ~ 1, family=binomial(link="logit"),
control=glm.control(trace=TRUE))
print.noquote(c(fit1$coef,fit2$coef))
#--- convergence via different paths ---#
fit1 <- glm(y ~ 1, family=binomial(link="logit"),start=-1.75,
control=glm.control(trace=TRUE))
fit2 <- glm2(y ~ 1, family=binomial(link="logit"),start=-1.75,
control=glm.control(trace=TRUE))
print.noquote(c(fit1$coef,fit2$coef))
#--- divergence of glm to infinite estimate ---#
fit1 <- glm(y ~ 1, family=binomial(link="logit"),start=-1.81)
fit2 <- glm2(y ~ 1, family=binomial(link="logit"),start=-1.81)
print.noquote(c(fit1$coef,fit2$coef))
#=======================================================================
# EXAMPLE 2: identity link Poisson (successful boundary convergence
# using 4 identical approaches in glm and glm2 with the method argument)
#=======================================================================
satellites <- crabs$Satellites
width.shifted <- crabs$Width - min(crabs$Width)
dark <- crabs$Dark
goodspine <- crabs$GoodSpine
fit1 <- glm(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4))
fit2 <- glm2(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4))
fit1.eq <- glm2(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4), method = "glm.fit")
fit2.eq <- glm(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4), method = "glm.fit2")
noquote(c("deviances: ",fit1$dev,fit2$dev,fit1.eq$dev,fit2.eq$dev))
noquote(c("converged: ",fit1$conv,fit2$conv,fit1.eq$conv,fit2.eq$conv))
noquote(c("boundary: ",fit1$bound,fit2$bound,fit1.eq$bound,fit2.eq$bound))
#===================================================================
# EXAMPLE 3: identity link Poisson (periodic non-convergence in glm)
#===================================================================
R1 <- crabs$Rep1
satellites <- crabs$Satellites[R1]
width.shifted <- crabs$Width[R1] - min(crabs$Width)
dark <- crabs$Dark[R1]
goodspine <- crabs$GoodSpine[R1]
fit1 <- glm(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4),
control = glm.control(trace=TRUE))
fit2 <- glm2(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4),
control = glm.control(trace=TRUE))
noquote(c("deviances: ",fit1$dev,fit2$dev))
noquote(c("converged: ",fit1$conv,fit2$conv))
#===============================================================
# EXAMPLE 4: log link binomial (periodic non-convergence in glm)
#===============================================================
patients <- heart$Patients
deaths <- heart$Deaths
agegroup <- heart$AgeGroup
severity <-heart$Severity
delay <- heart$Delay
region <- heart$Region
start.p <- sum(deaths)/sum(patients)
fit1 <- glm(cbind(deaths,patients-deaths) ~ factor(agegroup) + factor(severity)
+ factor(delay) + factor(region), family = binomial(link="log"),
start = c(log(start.p), rep(0,8)), control = glm.control(trace=TRUE,maxit=100))
fit2 <- glm2(cbind(deaths,patients-deaths) ~ factor(agegroup) + factor(severity)
+ factor(delay) + factor(region), family = binomial(link="log"),
start = c(log(start.p), rep(0,8)), control = glm.control(trace=TRUE))
noquote(c("deviances: ",fit1$dev,fit2$dev))
noquote(c("converged: ",fit1$conv,fit2$conv))
#====================================================================
# EXAMPLE 5: identity link Poisson (aperiodic non-convergence in glm)
#====================================================================
R2 <- crabs$Rep2
satellites <- crabs$Satellites[R2]
width.shifted <- crabs$Width[R2] - min(crabs$Width)
dark <- crabs$Dark[R2]
goodspine <- crabs$GoodSpine[R2]
fit1 <- glm(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4),
control = glm.control(trace=TRUE))
fit2 <- glm2(satellites ~ width.shifted + factor(dark) + factor(goodspine),
family = poisson(link="identity"), start = rep(1,4),
control = glm.control(trace=TRUE))
noquote(c("deviances: ",fit1$dev,fit2$dev))
noquote(c("converged: ",fit1$conv,fit2$conv))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.