bigz_operators | R Documentation |
Addition, substraction, multiplication, (integer) division, remainder of division, multiplicative inverse, power and logarithm functions.
add.bigz(e1, e2)
sub.bigz(e1, e2 = NULL)
mul.bigz(e1, e2)
div.bigz(e1, e2)
divq.bigz(e1,e2) ## == e1 %/% e2
mod.bigz(e1, e2) ## == e1 %% e2
## S3 method for class 'bigz'
abs(x)
inv.bigz(a, b,...)## == (1 / a) (modulo b)
pow.bigz(e1, e2,...)## == e1 ^ e2
## S3 method for class 'bigz'
log(x, base=exp(1))
## S3 method for class 'bigz'
log2(x)
## S3 method for class 'bigz'
log10(x)
x |
bigz, integer or string from an integer |
e1 , e2 , a , b |
bigz, integer or string from an integer |
base |
base of the logarithm; base e as default |
... |
Additional parameters |
Operators can be used directly when objects are of class bigz: a + b, log(a), etc.
For details about the internal modulus state, and the rules
applied for arithmetic operations on big integers with a modulus,
see the bigz
help page.
a / b
=
div(a,b)
returns a rational number
unless the operands have a (matching) modulus where
a * b^-1
results.
a %/% b
(or, equivalently, divq(a,b)
) returns the
quotient of simple integer division (with truncation towards zero),
possibly re-adding a modulus at the end (but not using a
modulus like in a / b
).
r <- inv.bigz(a, m)
, the multiplicative inverse of
a
modulo m
, corresponds to 1/a
or a ^-1
from above when a
has modulus m
. Note that
a
not always has an inverse modulo m
, in which case
r
will be NA
with a warning that can be turned
off via
options("gmp:warnNoInv" = FALSE)
.
Apart from /
(or div
), where rational numbers
(bigq
) may result, these functions return an object of
class "bigz"
, representing the result of the arithmetic
operation.
Immanuel Scholz and Antoine Lucas
The GNU MP Library, see https://gmplib.org
# 1+1=2
as.bigz(1) + 1
as.bigz(2)^10
as.bigz(2)^200
# if my.large.num.string is set to a number, this returns the least byte
(my.large.num.string <- paste(sample(0:9, 200, replace=TRUE), collapse=""))
mod.bigz(as.bigz(my.large.num.string), "0xff")
# power exponents can be up to MAX_INT in size, or unlimited if a
# bigz's modulus is set.
pow.bigz(10,10000)
## Modulo 11, 7 and 8 are inverses :
as.bigz(7, mod = 11) * 8 ## ==> 1 (mod 11)
inv.bigz(7, 11)## hence, 8
a <- 1:10
(i.a <- inv.bigz(a, 11))
d <- as.bigz(7)
a %/% d # = divq(a, d)
a %% d # = mod.bigz (a, d)
(ii <- inv.bigz(1:10, 16))
## with 5 warnings (one for each NA)
op <- options("gmp:warnNoInv" = FALSE)
i2 <- inv.bigz(1:10, 16) # no warnings
(i3 <- 1 / as.bigz(1:10, 16))
i4 <- as.bigz(1:10, 16) ^ -1
stopifnot(identical(ii, i2),
identical(as.bigz(i2, 16), i3),
identical(i3, i4))
options(op)# revert previous options' settings
stopifnot(inv.bigz(7, 11) == 8,
all(as.bigz(i.a, 11) * a == 1),
identical(a %/% d, divq.bigz(1:10, 7)),
identical(a %% d, mod.bigz (a, d))
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.