impute_RF: Imputing missing values using Random Forest.

Description Usage Arguments Details Value Author(s) References Examples

Description

Imputing missing values using the algorithm proposed by Stekhoven and Buehlmann (2012). The function is based on the missForest function of the R package missForest.

Usage

1
2
3
4
5
6
7
impute.RF(tab, conditions,
                    maxiter = 10, ntree = 100, variablewise = FALSE,
                    decreasing = FALSE, verbose = FALSE,
                    mtry = floor(sqrt(ncol(tab))), replace = TRUE,
                    classwt = NULL, cutoff = NULL, strata = NULL,
                    sampsize = NULL, nodesize = NULL, maxnodes = NULL,
                    xtrue = NA, parallelize = c('no', 'variables', 'forests'))

Arguments

tab

A data matrix containing numeric and missing values. Each column of this matrix is assumed to correspond to an experimental sample, and each row to an identified peptide.

conditions

A vector of factors indicating the biological condition to which each sample belongs.

maxiter

parameter of the missForest function (missForest R package).

ntree

parameter of the missForest function (missForest R package).

variablewise

parameter of the missForest function (missForest R package).

decreasing

parameter of the missForest function (missForest R package).

verbose

parameter of the missForest function (missForest R package).

mtry

parameter of the missForest function (missForest R package).

replace

parameter of the missForest function (missForest R package).

classwt

parameter of the missForest function (missForest R package).

cutoff

parameter of the missForest function (missForest R package).

strata

parameter of the missForest function (missForest R package).

sampsize

parameter of the missForest function (missForest R package).

nodesize

parameter of the missForest function (missForest R package).

maxnodes

parameter of the missForest function (missForest R package).

xtrue

parameter of the missForest function (missForest R package).

parallelize

parameter of the missForest function (missForest R package).

Details

See Stekhoven and Buehlmann (2012) for the theory. It is built from functions proposed in the R package missForest.

Value

The input matrix tab with imputed values instead of missing values.

Author(s)

Quentin Giai Gianetto <quentin2g@yahoo.fr>

References

Stekhoven, D.J. and Buehlmann, P. (2012), 'MissForest - nonparametric missing value imputation for mixed-type data', Bioinformatics, 28(1) 2012, 112-118, doi: 10.1093/bioinformatics/btr597

Examples

1
2
3
4
5
#Simulating data
res.sim=sim.data(nb.pept=2000,nb.miss=600,nb.cond=2);

#Imputation of missing values with Random Forest
dat.rf=impute.RF(tab=res.sim$dat.obs,conditions=res.sim$condition);

imp4p documentation built on Sept. 5, 2021, 5:38 p.m.