nScree | R Documentation |
The nScree
function returns an analysis of the number of component or
factors to retain in an exploratory principal component or factor analysis.
The function also returns information about the number of components/factors
to retain with the Kaiser rule and the parallel analysis.
nScree(eig = NULL, x = eig, aparallel = NULL, cor = TRUE, model = "components", criteria = NULL, ...)
eig |
depreciated parameter (use x instead): eigenvalues to analyse |
x |
numeric: a |
aparallel |
numeric: results of a parallel analysis. Defaults eigenvalues fixed at λ >= \bar{λ} (Kaiser and related rule) or λ >= 0 (CFA analysis) |
cor |
logical: if |
model |
character: |
criteria |
numeric: by default fixed at \bar{λ}. When the λs are computed from a principal component analysis on a correlation matrix, it corresponds to the usual Kaiser λ >= 1 rule. On a covariance matrix or from a factor analysis, it is simply the mean. To apply λ >= 0, sometimes used with factor analysis, fix the criteria to 0. |
... |
variabe: additionnal parameters to give to the |
The nScree
function returns an analysis of the number of
components/factors to retain in an exploratory principal component or factor
analysis. Different solutions are given. The classical ones are the Kaiser
rule, the parallel analysis, and the usual scree test
(plotuScree
). Non graphical solutions to the Cattell
subjective scree test are also proposed: an acceleration factor (af)
and the optimal coordinates index oc. The acceleration factor
indicates where the elbow of the scree plot appears. It corresponds to the
acceleration of the curve, i.e. the second derivative. The optimal
coordinates are the extrapolated coordinates of the previous eigenvalue that
allow the observed eigenvalue to go beyond this extrapolation. The
extrapolation is made by a linear regression using the last eigenvalue
coordinates and the k+1 eigenvalue coordinates. There are k-2
regression lines like this. The Kaiser rule or a parallel analysis
criterion (parallel
) must also be simultaneously satisfied to
retain the components/factors, whether for the acceleration factor, or for
the optimal coordinates.
If λ_i is the i^{th} eigenvalue, and LS_i is a location statistics like the mean or a centile (generally the followings: 1^{st}, \ 5^{th}, \ 95^{th}, \ or \ 99^{th}).
The Kaiser rule is computed as:
n_{Kaiser} = ∑_{i} (λ_{i} ≥ \bar{λ}).
Note that \bar{λ} is equal to 1 when a correlation matrix is used.
The parallel analysis is computed as:
n_{parallel} = ∑_{i} (λ_{i} ≥ LS_i).
The acceleration factor (AF) corresponds to a numerical solution to the elbow of the scree plot:
n_{AF} \equiv \ If \ ≤ft[ (λ_{i} ≥ LS_i) \ and \ max(AF_i) \right].
The optimal coordinates (OC) corresponds to an extrapolation of the preceeding eigenvalue by a regression line between the eigenvalue coordinates and the last eigenvalue coordinates:
n_{OC} = ∑_i ≤ft[(λ_i ≥ LS_i) \cap (λ_i ≥ (λ_{i \ predicted}) \right].
Components |
Data frame for the number of components/factors according to different rules |
Components$noc |
Number of components/factors to retain according to optimal coordinates oc |
Components$naf |
Number of components/factors to retain according to the acceleration factor af |
Components$npar.analysis |
Number of components/factors to retain according to parallel analysis |
Components$nkaiser |
Number of components/factors to retain according to the Kaiser rule |
Analysis |
Data frame of vectors linked to the different rules |
Analysis$Eigenvalues |
Eigenvalues |
Analysis$Prop |
Proportion of variance accounted by eigenvalues |
Analysis$Cumu |
Cumulative proportion of variance accounted by eigenvalues |
Analysis$Par.Analysis |
Centiles of the random eigenvalues generated by the parallel analysis. |
Analysis$Pred.eig |
Predicted eigenvalues by each optimal coordinate regression line |
Analysis$OC |
Critical optimal coordinates oc |
Analysis$Acc.factor |
Acceleration factor af |
Analysis$AF |
Critical acceleration factor af |
Otherwise, returns a summary of the analysis.
Gilles Raiche
Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276.
Dinno, A. (2009). Gently clarifying the application of Horn's parallel analysis to principal component analysis versus factor analysis. Portland, Oregon: Portland Sate University.
Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19, 149-162.
Horn, J. L. (1965). A rationale for the number of factors in factor analysis. Psychometrika, 30, 179-185.
Kaiser, H. F. (1960). The application of electronic computer to factor analysis. Educational and Psychological Measurement, 20, 141-151.
Raiche, G., Walls, T. A., Magis, D., Riopel, M. and Blais, J.-G. (2013). Non-graphical solutions for Cattell's scree test. Methodology, 9(1), 23-29.
plotuScree
, plotnScree
,
parallel
, plotParallel
,
## INITIALISATION data(dFactors) # Load the nFactors dataset attach(dFactors) vect <- Raiche # Uses the example from Raiche eigenvalues <- vect$eigenvalues # Extracts the observed eigenvalues nsubjects <- vect$nsubjects # Extracts the number of subjects variables <- length(eigenvalues) # Computes the number of variables rep <- 100 # Number of replications for PA analysis cent <- 0.95 # Centile value of PA analysis ## PARALLEL ANALYSIS (qevpea for the centile criterion, mevpea for the ## mean criterion) aparallel <- parallel(var = variables, subject = nsubjects, rep = rep, cent = cent )$eigen$qevpea # The 95 centile ## NUMBER OF FACTORS RETAINED ACCORDING TO DIFFERENT RULES results <- nScree(x=eigenvalues, aparallel=aparallel) results summary(results) ## PLOT ACCORDING TO THE nScree CLASS plotnScree(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.