nlme | R Documentation |
This generic function fits a nonlinear mixed-effects model in the formulation described in Lindstrom and Bates (1990) but allowing for nested random effects. The within-group errors are allowed to be correlated and/or have unequal variances.
nlme(model, data, fixed, random, groups, start, correlation, weights,
subset, method, na.action, naPattern, control, verbose)
## S3 method for class 'formula'
nlme(model, data, fixed, random, groups, start, correlation, weights,
subset, method, na.action, naPattern, control, verbose)
model |
a nonlinear model formula, with the response on the left
of a |
data |
an optional data frame containing the variables named in
|
fixed |
a two-sided linear formula of the form
|
random |
optionally, any of the following: (i) a two-sided formula
of the form |
groups |
an optional one-sided formula of the form |
start |
an optional numeric vector, or list of initial estimates
for the fixed effects and random effects. If declared as a numeric
vector, it is converted internally to a list with a single component
|
correlation |
an optional |
weights |
an optional |
subset |
an optional expression indicating the subset of the rows of
|
method |
a character string. If |
na.action |
a function that indicates what should happen when the
data contain |
naPattern |
an expression or formula object, specifying which returned values are to be regarded as missing. |
control |
a list of control values for the estimation algorithm to
replace the default values returned by the function |
verbose |
an optional logical value. If |
an object of class nlme
representing the nonlinear
mixed-effects model fit. Generic functions such as print
,
plot
and summary
have methods to show the results of the
fit. See nlmeObject
for the components of the fit. The functions
resid
, coef
, fitted
, fixed.effects
, and
random.effects
can be used to extract some of its components.
The function does not do any scaling internally: the optimization will work best when the response is scaled so its variance is of the order of one.
José Pinheiro and Douglas Bates bates@stat.wisc.edu
The model formulation and computational methods are described in Lindstrom, M.J. and Bates, D.M. (1990). The variance-covariance parametrizations are described in Pinheiro and Bates (1996).
Lindstrom, M.J. and Bates, D.M. (1990) "Nonlinear Mixed Effects Models for Repeated Measures Data", Biometrics, 46, 673-687.
Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance Matrices", Statistics and Computing, 6, 289-296.
For the different correlation structures, variance functions and links,
see ‘References’ in lme
.
nlmeControl
, nlme.nlsList
,
nlmeObject
, nlsList
,
nlmeStruct
,
pdClasses
,
reStruct
, varFunc
,
corClasses
, varClasses
fm1 <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly,
fixed = Asym + R0 + lrc ~ 1,
random = Asym ~ 1,
start = c(Asym = 103, R0 = -8.5, lrc = -3.3))
summary(fm1)
fm2 <- update(fm1, random = pdDiag(Asym + lrc ~ 1))
summary(fm2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.