| predict.ranger | R Documentation | 
Prediction with new data and a saved forest from Ranger.
## S3 method for class 'ranger'
predict(
  object,
  data = NULL,
  predict.all = FALSE,
  num.trees = object$num.trees,
  type = "response",
  se.method = "infjack",
  quantiles = c(0.1, 0.5, 0.9),
  what = NULL,
  seed = NULL,
  num.threads = NULL,
  verbose = TRUE,
  ...
)
object | 
 Ranger   | 
data | 
 New test data of class   | 
predict.all | 
 Return individual predictions for each tree instead of aggregated predictions for all trees. Return a matrix (sample x tree) for classification and regression, a 3d array for probability estimation (sample x class x tree) and survival (sample x time x tree).  | 
num.trees | 
 Number of trees used for prediction. The first   | 
type | 
 Type of prediction. One of 'response', 'se', 'terminalNodes', 'quantiles' with default 'response'. See below for details.  | 
se.method | 
 Method to compute standard errors. One of 'jack', 'infjack' with default 'infjack'. Only applicable if type = 'se'. See below for details.  | 
quantiles | 
 Vector of quantiles for quantile prediction. Set   | 
what | 
 User specified function for quantile prediction used instead of   | 
seed | 
 Random seed. Default is   | 
num.threads | 
 Number of threads. Use 0 for all available cores. Default is 2 if not set by options/environment variables (see below).  | 
verbose | 
 Verbose output on or off.  | 
... | 
 further arguments passed to or from other methods.  | 
For type = 'response' (the default), the predicted classes (classification), predicted numeric values (regression), predicted probabilities (probability estimation) or survival probabilities (survival) are returned. 
For type = 'se', the standard error of the predictions are returned (regression only). The jackknife-after-bootstrap or infinitesimal jackknife for bagging is used to estimate the standard errors based on out-of-bag predictions. See Wager et al. (2014) for details.
For type = 'terminalNodes', the IDs of the terminal node in each tree for each observation in the given dataset are returned.
For type = 'quantiles', the selected quantiles for each observation are estimated. See Meinshausen (2006) for details.
If type = 'se' is selected, the method to estimate the variances can be chosen with se.method. Set se.method = 'jack' for jackknife-after-bootstrap and se.method = 'infjack' for the infinitesimal jackknife for bagging.
For classification and predict.all = TRUE, a factor levels are returned as numerics.
To retrieve the corresponding factor levels, use rf$forest$levels, if rf is the ranger object.
By default, ranger uses 2 threads. The default can be changed with: (1) num.threads in ranger/predict call, (2) environment variable
R_RANGER_NUM_THREADS, (3) options(ranger.num.threads = N), (4) options(Ncpus = N), with precedence in that order.
Object of class ranger.prediction with elements
predictions  | Predicted classes/values (only for classification and regression) | 
unique.death.times  | Unique death times (only for survival). | 
chf  | Estimated cumulative hazard function for each sample (only for survival). | 
survival  | Estimated survival function for each sample (only for survival). | 
num.trees  | Number of trees. | 
num.independent.variables  | Number of independent variables. | 
treetype  | Type of forest/tree. Classification, regression or survival. | 
num.samples  | Number of samples. | 
Marvin N. Wright
Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J Stat Softw 77:1-17. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v077.i01")}.
Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife. J Mach Learn Res 15:1625-1651. https://jmlr.org/papers/v15/wager14a.html.
Meinshausen (2006). Quantile Regression Forests. J Mach Learn Res 7:983-999. https://www.jmlr.org/papers/v7/meinshausen06a.html.
ranger
## Classification forest
ranger(Species ~ ., data = iris)
train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx, ]
iris.test <- iris[-train.idx, ]
rg.iris <- ranger(Species ~ ., data = iris.train)
pred.iris <- predict(rg.iris, data = iris.test)
table(iris.test$Species, pred.iris$predictions)
## Quantile regression forest
rf <- ranger(mpg ~ ., mtcars[1:26, ], quantreg = TRUE)
pred <- predict(rf, mtcars[27:32, ], type = "quantiles", quantiles = c(0.1, 0.5, 0.9))
pred$predictions
## Quantile regression forest with user-specified function
rf <- ranger(mpg ~ ., mtcars[1:26, ], quantreg = TRUE)
pred <- predict(rf, mtcars[27:32, ], type = "quantiles", 
                what = function(x) sample(x, 10, replace = TRUE))
pred$predictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.