rddensity | R Documentation |
rddensity
implements manipulation testing procedures using the
local polynomial density estimators proposed in Cattaneo, Jansson and Ma (2020),
and implements graphical procedures with valid confidence bands using the results
in Cattaneo, Jansson and Ma (2022, 2023). In addition, the command provides complementary
manipulation testing based on finite sample exact binomial testing following the
esults in Cattaneo, Frandsen and Titiunik (2015) and Cattaneo, Frandsen and
Vazquez-Bare (2017). For an introduction to manipulation testing see McCrary (2008).
A companion Stata
package is described in Cattaneo, Jansson and Ma (2018).
Companion commands: rdbwdensity
for data-driven bandwidth selection, and
rdplotdensity
for density plots.
Related Stata and R packages useful for inference in regression discontinuity (RD) designs are described in the website: https://rdpackages.github.io/.
rddensity(
X,
c = 0,
p = 2,
q = 0,
fitselect = "",
kernel = "",
vce = "",
massPoints = TRUE,
h = c(),
bwselect = "",
all = FALSE,
regularize = TRUE,
nLocalMin = NULL,
nUniqueMin = NULL,
bino = TRUE,
binoW = NULL,
binoN = NULL,
binoWStep = NULL,
binoNStep = NULL,
binoNW = 10,
binoP = 0.5
)
X |
Numeric vector or one dimensional matrix/data frame, the running variable. |
c |
Numeric, specifies the threshold or cutoff value in the support of |
p |
Nonnegative integer, specifies the local polynomial order used to construct
the density estimators. Default is |
q |
Nonnegative integer, specifies the local polynomial order used to construct
the bias-corrected density estimators. Default is |
fitselect |
String, specifies the density estimation method.
|
kernel |
String, specifies the kernel function used to construct the local
polynomial estimators.
|
vce |
String, specifies the procedure used to compute the variance-covariance matrix estimator.
|
massPoints |
|
h |
Numeric, specifies the bandwidth used to construct the density estimators on the two
sides of the cutoff. If not specified, the bandwidth h is computed by the companion command
|
bwselect |
String, specifies the bandwidth selection procedure to be used.
|
all |
|
regularize |
|
nLocalMin |
Nonnegative integer, specifies the minimum number of observations in each local neighborhood.
This option will be ignored if set to |
nUniqueMin |
Nonnegative integer, specifies the minimum number of unique observations in
each local neighborhood. This option will be ignored if set to |
bino |
|
binoW |
Numeric, specifies the half length(s) of the initial window. If two values are provided, they will be used for the data below and above the cutoff separately. |
binoN |
Nonnegative integer, specifies the minimum number of observations on each side of the cutoff used for
the binomial test. This option will be ignored if |
binoWStep |
Numeric, specifies the increment in half length(s). |
binoNStep |
Nonnegative integer, specifies the minimum increment in sample size (on each side of the cutoff).
This option will be ignored if |
binoNW |
Nonnegative integer, specifies the total number of windows. Default is |
binoP |
Numeric, specifies the null hypothesis of the binomial test. Default is |
hat |
|
sd_asy |
|
sd_jk |
|
test |
|
hat_p |
Same as |
sd_asy_p |
Same as |
sd_jk_p |
Same as |
test_p |
Same as |
N |
|
h |
|
opt |
Options passed to the function. |
bino |
Binomial test results. |
X_min |
|
X_max |
|
Matias D. Cattaneo, Princeton University cattaneo@princeton.edu.
Michael Jansson, University of California Berkeley. mjansson@econ.berkeley.edu.
Xinwei Ma (maintainer), University of California San Diego. x1ma@ucsd.edu.
Cattaneo, M. D., B. Frandsen, and R. Titiunik. 2015. Randomization Inference in the Regression Discontinuity Design: An Application to the Study of Party Advantages in the U.S. Senate. Journal of Causal Inference 3(1): 1-24. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1515/jci-2013-0010")}
Cattaneo, M. D., M. Jansson, and X. Ma. 2018. Manipulation Testing based on Density Discontinuity. Stata Journal 18(1): 234-261. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/1536867X1801800115")}
Cattaneo, M. D., M. Jansson, and X. Ma. 2020. Simple Local Polynomial Density Estimators. Journal of the American Statistical Association, 115(531): 1449-1455. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2019.1635480")}
Cattaneo, M. D., M. Jansson, and X. Ma. 2022. lpdensity: Local Polynomial Density Estimation and Inference. Journal of Statistical Software, 101(2): 1–25. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v101.i02")}
Cattaneo, M. D., M. Jansson, and X. Ma. 2023. Local Regression Distribution Estimators. Journal of Econometrics, 240(2): 105074. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jeconom.2021.01.006")}
Cattaneo, M. D., R. Titiunik and G. Vazquez-Bare. 2017. Comparing Inference Approaches for RD Designs: A Reexamination of the Effect of Head Start on Child Mortality. Journal of Policy Analysis and Management 36(3): 643-681. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/pam.21985")}
McCrary, J. 2008. Manipulation of the Running Variable in the Regression Discontinuity Design: A Density Test. Journal of Econometrics 142(2): 698-714. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jeconom.2007.05.005")}
rdbwdensity
, rdplotdensity
### Continuous Density
set.seed(42)
x <- rnorm(2000, mean = -0.5)
rdd <- rddensity(X = x, vce = "jackknife")
summary(rdd)
### Bandwidth selection using rdbwdensity()
rddbw <- rdbwdensity(X = x, vce = "jackknife")
summary(rddbw)
### Plotting using rdplotdensity()
# 1. From -2 to 2 with 25 evaluation points at each side
plot1 <- rdplotdensity(rdd, x, plotRange = c(-2, 2), plotN = 25)
# 2. Plotting a uniform confidence band
set.seed(42) # fix the seed for simulating critical values
plot2 <- rdplotdensity(rdd, x, plotRange = c(-2, 2), plotN = 25, CIuniform = TRUE)
### Density discontinuity at 0
x[x > 0] <- x[x > 0] * 2
rdd2 <- rddensity(X = x, vce = "jackknife")
summary(rdd2)
plot3 <- rdplotdensity(rdd2, x, plotRange = c(-2, 2), plotN = 25)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.