Description Usage Arguments Details Value Examples
View source: R/modeltime_wfs_forecast.R
forecast from a set of recipes and models trained by modeltime_wfs_fit()
function.
1 | modeltime_wfs_forecast(.wfs_results, .series, .split_prop = NULL, .h = NULL)
|
.wfs_results |
tibble of combination of recipes and models fitted, generated with the |
.series |
time series dataframe. |
.split_prop |
time series split proportion. |
.h |
time series horizon from the |
since it uses the modeltime_forecast()
function from 'modeltime' package, either the forecast
can be made on new data or on a number of periods.
a tibble containing the forecast for each model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | library(dplyr)
library(modeltime)
library(earth)
data <- sknifedatar::data_avellaneda %>% mutate(date=as.Date(date)) %>%
filter(date<'2012-06-01')
recipe_date <- recipes::recipe(value ~ ., data = data) %>%
recipes::step_date(date, features = c('dow','doy','week','month','year'))
mars <- parsnip::mars(mode = 'regression') %>%
parsnip::set_engine('earth')
wfsets <- workflowsets::workflow_set(
preproc = list(
R_date = recipe_date),
models = list(M_mars = mars),
cross = TRUE)
wffits <- sknifedatar::modeltime_wfs_fit(.wfsets = wfsets,
.split_prop = 0.8,
.serie=data)
sknifedatar::modeltime_wfs_forecast(.wfs_results=wffits,
.series = data,
.split_prop = 0.8)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.