Description Usage Arguments Value Examples
View source: R/modeltime_wfs_multifit.R
allows a workflow_set object to be fitted over multiple time series, using models from the 'modeltime' package.
1 | modeltime_wfs_multifit(serie, .prop, .wfs)
|
serie |
nested time series. |
.prop |
series train/test partition ratio. |
.wfs |
worklows_set object. |
A list of 2 items. The first component is a tibble with a first column that contains the name of the series, and a second column called 'nested_column' that stores the time series, then a column for each workflow for each series are stored. The last 2 columns, 'nested_model' and 'calibration', store the 'n' trained workflows for each series and the adjustment metrics on the test partition. The second element is a tibble saved with the name of 'models_accuracy', it allows to visualize the performance of each workflow for each series according to a set of metrics.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | library(dplyr)
library(earth)
df <- sknifedatar::emae_series
datex <- '2020-02-01'
df_emae <- df %>%
dplyr::filter(date <= datex) %>%
tidyr::nest(nested_column=-sector) %>%
head(2)
receta_base <- recipes::recipe(value ~ ., data = df %>% select(-sector))
mars <- parsnip::mars(mode = 'regression') %>% parsnip::set_engine('earth')
wfsets <- workflowsets::workflow_set(
preproc = list(
R_date = receta_base),
models = list(M_mars = mars),
cross = TRUE)
sknifedatar::modeltime_wfs_multifit(.wfs = wfsets,
.prop = 0.8,
serie = df_emae)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.