Description Usage Arguments Value Examples
The function applies the Wild Binary Segmentation algorithm to identify potential locations of the change-points in the mean of the input vector x
.
The object returned by this routine can be further passed to the changepoints
function,
which finds the final estimate of the change-points based on chosen stopping criteria.
1 2 3 4 5 |
x |
a numeric vector |
... |
not in use |
M |
a number of intervals used in the WBS algorithm |
rand.intervals |
a logical variable; if |
integrated |
a logical variable indicating the version of Wild Binary Segmentation algorithm used; when |
an object of class "wbs", which contains the following fields
x |
the input vector provided |
n |
the length of |
M |
the number of intervals used |
rand.intervals |
a logical variable indicating type of intervals |
integrated |
a logical variable indicating type of WBS procedure |
res |
a 6-column matrix with results, where 's' and 'e' denote start- end points of the intervals in which change-points candidates 'cpt' have been found; column 'CUSUM' contains corresponding value of CUSUM statistic; 'min.th' is the smallest threshold value for which given change-point candidate would be not added to the set of estimated change-points; the last column is the scale at which the change-point has been found |
1 2 3 4 5 6 7 8 | x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
plot(w)
w.cpt <- changepoints(w)
w.cpt
th <- c(w.cpt$th,0.7*w.cpt$th)
w.cpt <- changepoints(w,th=th)
w.cpt$cpt.th
|
$sigma
[1] 0.9244268
$th
[1] 4.058938
$no.cpt.th
[1] 1
$cpt.th
$cpt.th[[1]]
[1] 71
$Kmax
[1] 50
$ic.curve
$ic.curve$ssic.penalty
[1] 6.169828 -2.076369 2.094517 4.976528 10.700755 14.634837
[7] 20.363745 23.621532 25.013413 26.527290 30.650581 35.815807
[13] 40.446056 44.285020 46.878742 52.282997 57.109050 61.505328
[19] 64.146321 67.198243 70.187398 75.353524 80.690841 85.307921
[25] 87.690551 90.117899 92.265936 95.766653 99.674123 101.651746
[31] 104.621496 109.699988 111.757696 113.659580 115.586533 120.485209
[37] 122.422209 126.974370 129.472112 132.108233 135.808735 140.949030
[43] 143.570933 146.051831 149.628495 152.393247 157.455903 162.765412
[49] 164.998799 167.332343 171.940093
$ic.curve$bic.penalty
[1] 6.169828 -2.176549 1.894158 4.675989 10.300035 14.133938
[7] 19.762666 22.920273 24.211975 25.625671 29.648783 34.713829
[13] 39.243897 42.982682 45.476224 50.780299 55.506173 59.802270
[19] 62.343084 65.294826 68.183802 73.249747 78.486885 83.003784
[25] 85.286234 87.613403 89.661260 93.061798 96.869087 98.746531
[31] 101.616101 106.594413 108.551941 110.353646 112.180418 116.978915
[37] 118.815734 123.267716 125.665278 128.201219 131.801541 136.841656
[43] 139.363379 141.744098 145.220582 147.885154 152.847630 158.056959
[49] 160.190167 162.423531 166.931101
$ic.curve$mbic.penalty
[1] 6.1698277 -0.1802396 5.9107273 9.2273709 15.7031507 21.2535265
[7] 28.5014018 32.3104645 34.8657996 36.2717442 41.6566329 47.9083560
[13] 53.8068242 58.2927933 61.4281549 67.9448240 72.6577098 78.0435699
[19] 80.5710499 83.5031814 87.3076469 93.4676798 99.5952918 104.0925810
[25] 106.3528050 109.4873884 112.0032917 115.8892187 120.3723129 122.2127023
[31] 125.0609923 130.4770393 132.4181727 134.1287160 135.9332626 141.4684120
[37] 143.2749194 148.4635535 150.8407049 153.3366251 157.7374816 163.2063217
[43] 165.9834577 168.3319074 172.2138563 175.4374437 181.0172921 186.6166999
[49] 188.5471749 190.7370338 196.0583316
$cpt.ic
$cpt.ic$ssic.penalty
[1] 71
$cpt.ic$bic.penalty
[1] 71
$cpt.ic$mbic.penalty
[1] 71
$no.cpt.ic
ssic.penalty bic.penalty mbic.penalty
1 1 1
[[1]]
[1] 71 176 6
[[2]]
[1] 71
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.